23
Symmetry as a guide to superfluous theoretical structure

JENANN ISMAEL AND BAS C. VAN FRAASSEN

Symmetries can be a potent guide for identifying superfluous theoretical structure.
This topic provides a revealing illustration of the power of formal methods for
illuminating the contents of our theories, and bears potentially on some very old
philosophical problems. The philosophical and scientific literature contains a good
many discussions of individual cases, but the treatment is rarely general and tends
to be technically involved in a way that may bury the basic physical insight as well
as making it inaccessible to philosophers. We wish to identify the sorts of symmetry
that signal the presence of excess structure, and do so in a completely general way,
applicable to all theories and all genres of theory.

1 What is superfluous structure?

For any entity whether concrete or abstract we distinguish its elements and its struc-
ture; the latter is specified by listing relations between the elements (equivalently,
features of sets or sequences of elements). Whether or not some of its structure is
superfluous is clearly an interest-relative question. A sowing machine has superflu-
ous structure if some features of or relations between its elements are dispensable
for sowing, although these may be quite relevant to it from an aesthetic or antique
collectors’ point of view. Each of two features may be dispensable for the given
purpose, but they may not be both dispensable at once, namely if the machine has
multiple features which can play each other’s roles. Obviously then any machine at
all —classified in terms of intended function and design — has superfluous structure.
In the case of an abstract entity or intellectual product, classified in the same way,
it may not be absurd to think of discarding all superfluous structure.

A physical theory provides us with descriptions and models that can be used to
represent physical situations. We say that a theory has superfluous structure if it
provides multiple representations for the same physical situation. Unfortunately,
the way we describe and identify or distinguish physical situations tends itself to
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be quite theory-laden. So it is not usually possible to have also at hand an author-
itative, adequate, theory-independent account of nature against which we can test
for superfluous structure. What we can do is inspect the theoretical representations
and look for internal evidence to suggest that several of them are so alike that to
distinguish between them makes a distinction without a difference.

‘So alike’: thereby hangs a tale. If they are alike to that extent, they must differ
only in ways that amount to physically superfluous structure. Logically, of course,
there could be physical differences that correspond to no measurable or observable
difference. Logic alone will not decide what is physically superfluous in a model.
Metaphysical views, physical intuition, and empiricist preferences for empirical
content over metaphysical distinctions will all play a role in what is identified as
really superfluous. But symmetry is a guide to this identification in all cases, and
we wish to display this in a sufficiently general framework for the study of theory
structure.

Outside the theoretician’s study our clues to physically significant differences
are the observable or measurable differences. But these provide no easy guide,
and as we will see, the distinction between ‘observable’ and ‘measurable’ itself
turns out to matter. A theory is usually around long before we know whether it
contains unmeasurable quantities, and which quantities those might be. The pro-
cess of identifying unmeasurable quantities, i.e. of smoking them out of their hid-
ing places in the theoretical apparatus, is long, hard, and highly non-trivial. It
is a discovery, then, and not a happy one, that a theory contains unmeasurable
quantities.

Why is there something amiss with a theory that contains unmeasurable quan-
tities? It is not because we have any a priori guarantee that there are no such
quantities, i.e. that our senses see right through to the bottom of things, but be-
cause they are not a proper part of the subject matter of theorizing. To isolate an
unmeasurable quantity mathematically is to demonstrate that the theory to which it
belongs has idle parts, wheels which turn without turning anything. But it requires
a clear view of theories as well as of theory—phenomena relations to clarify this.

2 What is a theory?

A theory has two main ingredients: a theoretical ontology which specifies its ini-
tial (metaphysical) possibility space, and a set of laws which selects therefrom the
physical possibilities. There is for any historically developed theory a great deal of
leeway in how it is conceived and presented. In the case of classical mechanics, for
example, we need only recall the names of Newton himself, Lagrange, Hamilton,
Kirchhoff, Mach, Birkhoff, and Mackey to see the diversity possible in founda-
tional reconstruction. Our own form of presentation is meant to help bring out, as
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perspicuously as possible, the roles of symmetry in conceptions of physical theory
structure.

2.1 Theoretical ontology

The initial framework of a theory — its (theoretical) ontology — serves to delineate
in very broad terms what will count as its initial (metaphysical) possibility space.
Following common usage we will refer to the points in this space as (possible)
worlds.

‘We will think of the ontology as specified by means of a catalogue, listing classes
of entities, quantities, and relations which together determine the theory’s param-
eters of representation. These serve as the ‘supervenience base’ for the description
of nature: every possibility conceivable in this theoretical context can be conceived
of entirely in terms of parameters that are either among or derivative from items
in the catalogue. The items in the catalogue must be ‘typed’ (in the way that sets
in type theory are, for example). Thus if A is one of the entities and Q a quantity,
the specification that Q(A) = r will make sense only if O, A, and r are of the right
type. All complete specifications of this sort identify points in the initial possibil-
ity space: the (metaphysically) possible worlds. This space is, in effect, the set of
worlds obtained from the catalogue by means of any arrangement whatsoever of
the theory’s basic building blocks.!

As a first example think of the revival of ancient atomism in the sixteenth and
seventeenth centuries. The world is conceived of as made up of atoms, whose num-
ber is the first basic quantity; each atom is characterized by means of the fixed list
of primary qualities. Those primary qualities are actually quantities; their quantifi-
cation was a crucial step for the new sciences. Initially at least, the ‘mechanical
philosophy’ of the seventeenth century saw no need for more; any more clearly
qualitative aspects of the world were merely derivative. What David Lewis and
others have called a Principle of Recombination is clearly held in this context.? For
if we take any part of the class of atoms of one world, combine it with some of
those of another world, keeping in each case their primary qualities, then the result
is a third (metaphysically) possible world.

If a theory is more holistic in its world picture, it is not equally straightforward to
see it in this way. One way would be to think of the supervenience base as containing
more complex quantities with the simpler ones as derivative. Another way, perhaps
equally ‘formal’, would be to think of holistic properties of complex systems as

! In what follows, when we say ‘possibility’, we will always mean metaphysical possibility. Physical possibilities
will always be explicitly identified as such.

2 There are questions, here, about the metaphysical possibility of worlds that contain quantities or entities of kinds
that are nowhere instantiated at our world (see Lewis, 1983), but these play no role in physical contexts.
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external relations (i.e. relations that don’t supervene on the intrinsic properties of
their relata) between their parts.

Consider, for example, an N-body system in elementary quantum mechanics. The
state of the whole is not determined by the states of its parts. In fact, as Schrodinger
already pointed out, if the whole system is in a pure state, states ascribed to its
parts can in general not be pure; and different pure states of the whole system are
compatible with the same (mixed) states for its parts. Thus, one way to think of this
is to take the state of the whole as basic and the rest as derivative. We can think here
for example of taking all the states in the Schrodinger picture of N-body systems,
for each N, as basic. With time then as an independent parameter, represented by
the real number continuum, each possible world is a trajectory in one of the relevant
state spaces. But it is also possible, in a formal sense, to think of the state of the
whole as encoding the states of the parts plus certain non-supervening, non-spatial
relations between its constituents that are not captured in their individual states.’

Even so, before any laws are introduced, and depending a bit on how much or
how little we specify in the catalogue, many of these (metaphysically) possible
worlds will be very strange and nothing like what we can think of as a quantum
mechanically (physically) possible world. But what we will have at this point is a
basic framework for which the laws can be formulated.

2.2 Laws and physical possibilities

Thus we can represent a theory as a structured set of possibilities, and this turns
out to be a nice way of thinking of theories.* These structured sets of possibilities
(heretofore, ‘possibility spaces’) relate in a straightforward way to spaces that
physicists are accustomed to dealing with (phase spaces and configuration spaces,
for instance, can be identified with subspaces of them), and they are familiar sorts
of objects to philosophers.

We can think of the laws of theory as given in many different ways, but they
have one simple role. They select a subset of points of the metaphysical possibility
space: that selection is (or represents) the set of physical possibilities; we speak of
these also as the physically possible worlds. If the laws are specified separately as
conditions expressed by propositions or equations, for example, then the selected

3 The case is complicated by the fact that the relations in question are relations between probabilities, i.e. corre-
lations. See Mermin (1998, appendix A).

4 Features that play an important role in some conceptions of theories (e.g. the language in which they are
formulated or the mathematical form of their equations) are treated as incidental on this approach, relegated to
the subsidiary role of picking out the worlds that are the real locus of interest. We don’t set much store on debates
about the ‘right’ way to represent theories; any way that contains enough information to reconstruct ontology
and laws is adequate. It also doesn’t much matter how we mark the physical possibilities, but it’s convenient
to keep the markings separate from the intrinsic structure of the space, so that structures intrinsic to the space
represent only internal relations between possibilities.
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worlds are precisely those points in the metaphysical possibility space that satisfy
those conditions.

3 Empirical content

We must now introduce the ingredient that is external to theory structure, i.e. to
the ontology and laws, namely the theory—phenomena relation. This enters in two
contexts: when we are trying to decide what kind of epistemic attitude to take
towards a theory, and when we are trying to interpret it.

3.1 Qualitative structure

To begin, we introduce the interpretative predicate ‘qualitative’. A world has quali-
tative features as well as structure, but this is a distinction we impose from without,
by relating its features to us, the epistemic community. Thus the distinction is not
to be found inside the theory or its models; it pertains to the theory’s (and its mod-
els’) use. Qualitative aspects of a physical situation correspond in our terminology
to parameters which characterize that situation, and are directly accessible to us
through perception. When we specify implications of a theory that pertain to qual-
itative aspects of a situation we are linking the theory to the content of possible
perceptions, hence specifying empirical content.

We realize that the equation of qualitative with perceptible features is contentious,
since something more than a choice of terms may be at issue. So we will expand
on this by relating these terms to each other and to further terms typically used in
this context.

Traditionally the terms ‘quality’ and ‘qualitative’ did indeed have a different
meaning. Thus Kant’s Table of Categories lists quality, quantity, and relation, and
distinguishes them in that traditional way. But for us today quality cannot con-
trast with quantity. Take any quality Q which an entity A may or may not have;
we can think of Q as a quantity (a function that takes numbers or similar math-
ematical objects as values) such that Q(A) equals 1 if A has Q and equals zero
otherwise. Nor need quantities be real-number valued: a partially ordered set of
determinations under a determinant can be represented by a function that maps en-
tities into a partially ordered mathematical structure for its values. The distinction
between metric and non-metric aspects of even a geometric structure is closer to
the traditional quantity/quality distinction, but equally soft.’

5 Coordinates can be introduced in synthetic projective geometry by construction, and a metric can be defined
from these. This point was central to Russell’s (1897) diatribe against those who in his view betrayed the real
theory of space.
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3.2 Qualitative vs. measurable

But the distinction between directly accessible and non-accessible quantities, with
the former’s link to observation and experience, is crucial to any evaluation of how
well or poorly a theory manages to represent nature. This distinction often appears
disguised in terms such as ‘physical intuition’, ‘physically meaningful’, ‘physically
significant’, and the like; indeed, its name is legion. Thus in a recent paper by
Belot (2001), which we shall discuss further in a later section, it is easy to find
telling examples. In his discussion of Hertz’s programme, for example, he writes

(p. 72):

in fact, it is all too easy to implement it technically. The problem is rather that known
implementations have little discernible physical interest. The kinetic energy in question
bears no straightforward relation to any physical notion.

It would be hard to find any reading for ‘physical’ in this context that does not
imply at least ‘measurable’ or even ‘observable’ .

Like so many in the philosophical lexicon, ‘observable’ is an accordion term
all too easily squeezed or stretched out. One use applies only to entities — objects,
events, processes which may or may not be small enough, large enough, massive
enough, etc., to be observable by us.® A second use, which we will adopt here,
applies to quantities that can characterize a situation, distinguishable by even a
gross discrimination of colour, texture, smell, and so on. These alone we shall here
count as qualitative. They are accordingly to be distinguished from measurable
quantities. The latter include only quantities whose values make some discernible
impact on gross discrimination of colour, texture, smell, and so on, but it doesn’t
matter how attenuated the connection is, how esoteric the impact, or how special the
conditions under which it can be discerned. It will do no harm to count qualitative
quantities as measurable, but many measurable quantities will be non-qualitative.
We observe therefore a tripartite distinction between qualitative, measurable but
non-qualitative, and unmeasurable quantities.

Which quantities are qualitative we take to be part of our resources for fixing the
interpretation of a theory. But then we may take that either to be a fact of nature,
or to be contextual, with the qualitative/non-qualitative line drawn differently in
different theoretical contexts. While we have views on this, the choice does not
seem to affect our main discussion. The measurable/unmeasurable distinction, on
the other hand, is certainly not such a brute given line, but must be determined using
those resources, for each theory to be interpreted. This point relates directly to our
main topic: superfluous structure will align with the presence of unmeasurable
quantities in the theory’s world picture.

6 This is the preferred exclusive use of one of us (BVF), but is relaxed in the present context.
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3.3 Measurable but non-qualitative features

The history of this subject was ably told and given a remarkable continuation in
Glymour’s Theory and Evidence (1980). Imagine a discussion between Newtonians
and their rivals the Cartesians around 1700. All will consider the quantities of exten-
sion as directly given to observation, for observable objects. But the measurement
of some of these quantities, measurable by means of rulers and clocks, already
presupposes certain substantive assumptions — in the case of planetary motions, for
example, the immediate observations do not suffice without some assumption about
how light travels. So far, however, with respect to the kinematic quantities, the two
parties share the minimal needed presuppositions. It is different for the Newtonians’
new quantities of mass and force. Certainly they offer operational procedures for
determining these, but the measurement of the masses and forces in a system is a
calculation on the assumption that this system is a system of Newton’s mechanics.

This was the main point of Poincaré’s discussion of quantities in classical me-
chanics in his Science and Hypothesis (1952), but it followed on the nineteenth
century’s attempts to define the dynamical quantities in kinematic terms. These
attempts cannot be successful (given our current precise notion of definition) but
it is possible to state theoretical assumptions presupposed in the measurement of
those dynamical quantities using only kinematic terms. The best known example
is still Mach’s ‘definition’ of mass in terms of mutually induced accelerations un-
der special circumstances. Since the special circumstances usually do not obtain,
the challenge is to see whether the kinematic behaviour of the system implies the
values of the masses and forces. The trivial case of a body never accelerated refutes
this as a general claim, even if we amend ‘implies’ to ‘implies relative to Newtonian
mechanics’. Mach’s procedure is inadequate for less trivial cases also.” But in the
next century Pendse proved that if the complete kinematic data are given for the
elements of a point particle system at a sufficient number of times then the forces
and masses will be uniquely determined for a large class of cases. The main point
is of course that this large class of cases is certainly not exhaustive — not only
the general validity of the theory (such as constancy of mass) but also dynamical
isolation (with conservation of linear and angular momentum) are assumed in the
measurement calculations.

Subsequently Sneed (1971) gave a very precise form to Poincaré’s conclusion;
Glymour, while severely critical of Sneed, actually shows how this point emerges
also in such other writers as Hans Reichenbach, and relocates it in his concepts of
testing and evidence. A theory is tested by means of measurements of quantities on
the assumption that the theory is satisfied; for certain quantities nothing more basic
is possible. These are quantities which are measurable and definitely not qualitative,

7 For a clear discussion of this and also the following, see Jammer (1961, chapter 8).
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in our terms. From an epistemological point of view, therefore, measurement is in
effect a procedure conditioned on ambient theories to generate new observable
phenomena set in a theoretical context. Hence our emphasis here on observation
rather than measurement for the theory—phenomena relation.

To sum up then: we are going to connect superfluous structure with the presence
of unmeasurable quantities. However, what is measurable/unmeasurable cannot be
read off directly from a theory. We need to make use of what is observable in order
to make this distinction, but what is observable/unobservable does not align with
what is measurable/unmeasurable. How the two distinctions are related to each
other is spelled out to some extent in the above capsule history, but there is clearly
more work to be done on this topic.

4 Symmetries: kinds of structure-preservation

We will adopt here the following precise terminology. A transformation is a one-
to-one mapping of its domain onto its range. In the present context the domain and
range are the initial possibility space onto itself. A transformation may be definable
by means of instructions for adding or removing objects from a world, changing
their properties, or shifting them around in space and time, but in general it may
not even be computable or definable in any sense.

Intuitively, symmetries are transformations that preserve structure, and are there-
fore to be classified in terms of the (kind of) structure that they preserve. The
symmetries of a world have to be distinguished from the symmetries of a theory.
The symmetries of a world are transformations that map the world to itself. Thus if
M is a possible world and 4 is a transformation pertaining to it, 2 is a symmetry of M
if and only if AM = M. Symmetries of a theory, by contrast, are transformations of
the initial possibility space that preserve satisfaction of its laws, and also preserve
non-satisfaction. (These definitions are to be kept clearly in mind when we discuss
various symmetry groups that can be associated with a theory.) In the terminol-
ogy adopted above, the symmetries of a theory take physically possible worlds
into physically possible ones and physically impossible worlds into physically im-
possible ones. Hence we can equally well call them the symmetries of its laws.
(Indeed, one way to specify the laws is simply to specify that symmetry group —
not to be confused with narrower symmetry groups that may be under discussion
in a specific context!) They need not preserve any particular characteristic of these
worlds.

It would in general make no sense to suggest that only features preserved by
(invariant under) the symmetries of a given theory are real. For to identify all
possible worlds related by such symmetries (as representations of the same physical
possibility) would be to claim that there is only one physically possible world. Note
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that any mapping of worlds to worlds that leads from ‘legal’ to ‘illegal’ ones are
included; hence each physically possible world is the image of any other such
world under some such mapping. In the case of Newtonian particle mechanics, for
example, these mappings include ones that relate one system to another one with
the same number of particles (but different trajectories), but also mappings that
relate systems with different cardinalities.

We must look therefore to other symmetries, transformations that preserve not
only satisfaction and non-satisfaction of the laws but other significant features as
well. For example, in the construction of a theory one could begin with trans-
formations that preserve some spatiotemporal structure, and perhaps some other
quantities, and then ask under which among these the laws are preserved. Weyl
(1952, pp. 26—7) made this general point, which can be illustrated with the example
of Galilean transformations in classical mechanics. They are intimately related to
the laws. Yet we cannot say that a feature invariant under all Galilean transforma-
tions is always a matter of law. For number — the number of particles in the system,
say — is invariant, but the laws of classical mechanics do not impose any constraint
on number. The laws constrain relations between quantities, but not, typically, the
particular values they take. The nomologically contingent, but nonetheless real, fea-
tures of a situation are precisely those that distinguish worlds related by a symmetry
of the laws.

So in a diagnosis of what is real and what is superfluous structure the symmetries
to focus on may belong to some intermediate class(es). At least one springs to mind:
the class of symmetries of the theory that also preserve all qualitative features of
every model. This is a class that can be defined in the same way for all theories,
and therefore has the same generality as the notions of symmetry of a world and
symmetry of a theory.

5 The signs of superfluous structure

Consider a symmetry of theory 7" which maps each physically possible world to one
that is qualitatively indistinguishable.’ It will always be possible, without affecting

8 The Galilean transformations do not preserve position or velocity, yet these are directly measurable quantities.
That is an objection at first blush, but perhaps not on second thoughts. Position and velocity in a given frame
of reference are not preserved, while distances and relative velocities are. But it is precisely the latter that are
measured; the former result from a measurement plus some convention or paper-and-pencil operation. Recall
from above that, as we draw the lines, the qualitative features are those directly observationally accessible to
the observer, while measurement in general involves the deliverances of observation plus some theoretically
conditioned calculation. Note that it may also be necessary to add an indexical element into this conception. A
navigator on a ship may, for example, record the presence of an iceberg ten miles to the north-east. It is clear that
such a report is to be understood as carrying the indexical ‘from here’ Such a report can be made in ignorance of
the navigator’s location on the globe, and its indexical content is independent of that. But we leave this aspect
of observation to other occasions.

This is essential; the transformations in question have to preserve the qualitative structure of all physical
possibilities. See below for a further apparent disagreement with Belot.

©
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the empirical content of theory, to interpret such a transformation as a symmetry of
each of the worlds it relates. It will always be possible, that is to say, to interpret it as
acting as the identity on the worlds in question, notwithstanding that it may not act
as the identity on our representations of those worlds. If 4 is a qualitative-structure-
preserving symmetry of the laws, and M7 and M7 are theoretical representations
of worlds (descriptions or mathematical world-representing structures), such that
M7 = hMy and M3 # My, it will always be possible to identify the worlds rep-
resented by M7 and M7 respectively, and to think of the structures that distinguish
their representations as superfluous.

5.1 Trivial and non-trivial transformations

To interpret a transformation as trivial is to interpret it as permuting (at most)
physically insignificant features of theoretical structure. As physically significant
we count precisely (i) those features that are (jointly or individually) constrained by
the laws, plus (ii) the qualitative features, regardless of whether they are constrained
by the laws. Hence we submit that it is precisely the qualitative-structure-preserving
symmetries of the laws that are indicative of the presence of superfluous theoretical
structure and should always be interpreted as trivial.

We are distinguishing here three classes of transformations, with corresponding
interpretational claims:

(a) Transformations that preserve qualitative structure but are not symmetries of the
laws. These will turn at least some physically possible worlds into physically
impossible ones, though there is no observable difference.

(b) Symmetries of the laws that are not qualitative structure preserving. These
produce distinct physically possible worlds.

(c) Qualitative-structure-preserving symmetries. We submit that it is precisely these
which suggest the presence of superfluous structure.

The symmetries in class (b) include non-geometric transformations that permute
the values of dynamically relevant unobservable quantities (i.e. transformations that
induce unobservable changes with potential but non-actual observable effects), and
geometric transformations that are not symmetries of the laws (i.e. transformations
that can change the state of motion of a system in a way relevant to their dynamical
behaviour).!?

5.2 A sophistical argument

Here is an argument that all theories will necessarily have superfluous structure by
the above criteria. Consider even the very simple theory that says:

10" We will discuss an example below, in connection with a claim made in Belot (2001).
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(i) There are exactly two objects.
(i) There is a red object and a black object.

Take a world that satisfies these laws; it has two members in its domain. Call the
red one a and the black one b. There is another world, produced by the permutation
of the two (a transformation that does not preserve colour, but certainly legality)
in which a is the black one and b the red one. These two worlds are qualitatively
indiscernible. But they are clearly distinct, for in the first one the property (Ax)(x =
a & Red(x)) is instantiated and in the other world it is not instantiated. (Notice that
the Principle of the Identity of Indiscernibles does not get any purchase here: in
each world each individual has a uniquely defining description.)

Various gambits are familiar from the philosophical literature to try and block
this conclusion. Could we insist that non-trivial transformations must preserve the
individuals’ essential properties, and that the identity properties (such as (Ax)(x =
a)) are essential? Bad move, for then only the identity transformation f(x) = x
will count as non-trivial. Could we suggest that ‘=" be dropped from our admissible
language for constructing theories? Sounds like a bad move too, if we construe (i) in
the usual way as ‘There are x, y such that not [x = y]butforallz,z =xorz =y’ .
We should be able to express counting. However, it is possible to go higher order
and have primitive number properties: ‘in these worlds Red and Black are singly
instantiated’ and ‘the property of being Red or not Red is doubly instantiated’. Then
‘=" can perhaps be dropped.

We see this as a sophistical problem, artificially generated. There are two obvious
choices for philosophical bookkeeping. We can say that the argument succeeds in
displaying superfluous structure for every theory, but that this is trivial superfluous
structure, defining that notion precisely as ‘superfluous structure that every theory
has’. Or alternatively we can say that the displayed worlds are identical, that we
only have two descriptions differing in an arbitrary labelling that has no physical
significance. Our own preference is for the latter, but we do not see it as a substantive
issue.!!

In objection it may be suggested that each individual has its own haecceity,
which we thereby ignore, and that this makes the issue substantive. But introducing
haecceity, or any other hidden individuating factor, will just push the sophisti-
cal argument one step further. For if all non-trivial transformations must preserve
haecceity, then only the identity transformation is non-trivial. If on the other hand
haecceity need not be preserved, then there will be trivial but distinct variants on
worlds once more produced by permutation of the individuals. This dialectic is
then merely a useless replay of the same argument. In what follows we will some-
times just say ‘ignoring the individuals’ identity’ to remind ourselves of this bit of

I Cf. van Fraassen (1991, chapter 12, section 4.2) and Huggett (1999).

https://doi.org/10.1017/CB0978051 15353 E8TabNipgsidRapksifHina @ hRbRidgs W siersity Press, 2009


https://doi.org/10.1017/CBO9780511535369.024

382 Jenann Ismael and Bas C. van Fraassen

philosophical book-keeping. But let us add a few more remarks to locate this issue
properly.

There are two ways one can think about transformations. One can describe trans-
formations in an interpreted metalanguage, with as much structure as one likes. In
that case, for the purposes of describing their action on the class of structures under
consideration, they should be grouped into equivalence classes insofar as they are
indistinguishable by their effects on structures in the relevant class. Alternatively,
one can describe the transformations in the same language in which the structures
are described. In that case they are individuated more coarsely, so that there are no
distinct transformations that are indistinguishable by their effects on the structures
in question. This has the effect of tying the individuation of transformations to the
structures in the class in such a way that when one identifies superfluous structure in
the models, it is identified simultaneously in the class of applicable transformations.
The second alternative is more natural, because it ascends a level, applying the same
reasoning to the individuation of transformations as to the individuation of physical
possibilities. Transformations that act in the same way on all structures in the class
are identical, notwithstanding notational variation in their presentation. In appli-
cation to the example, it has the consequence that talk of permuting colours over
individual elements while leaving global colour distribution the same is nonsense.

6 Symmetries of the laws

The claim we have now introduced we have not so far supported, but by examining
other accounts of the matter and examples that illustrate the differences we mean
to make a plausible case. Our claim is in at least apparent disagreement with Belot,
who writes (2001, p. 55):

if there were a class of possible worlds whose shared geometry and laws were invariant
under some set of symmetries, then . . . there would exist distinct worlds sharing all of their
qualitative and relational properties.'?

Belot’s article, framed as a discussion of Leibniz’s Principle of Sufficient Reason
(PSR), is devoted to an exploration of the possibility of a trivial interpretation of
certain symmetries of classical mechanics. Instead of focusing on spaces of possible
worlds, Belot speaks in terms of spaces of possible states, and he focuses on spaces
whose geometric structure determines the physically possible trajectories through
it, effectively writing a theory’s dynamical laws into the space. So what we call
worlds are the trajectories in his discussion. That is just a different way of speaking,
but there are reasons (good reasons, we think, that discourage otherwise seductive

12 We readily admit that we are using this excellent and insightful article as a stalking horse, and that the apparent
disagreements may not go very deep; they will still clearly bring out the contents of our claims.
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confusions) to prefer talking, as we have, in terms of spaces of worlds with no more
intrinsic structure than is given by the internal relations among their elements, and
we will continue to do so.

Returning then to the quoted thesis, we note that Belot in effect omits the restric-
tion to symmetries that preserve qualitative structure, allowing for simple coun-
terexamples. Consider, for instance, the very simple theory that says that there are
two types of thing in the world, triangles and squares, and that there are two laws:

(i) There are only three objects in the world.
(i) Either everything is a black triangle, or everything is an orange square.

Ignoring the identity of the individuals (see above!) there are here only four physi-
cally possible worlds, distinguished by having 0, 1, 2, or 3 black triangles. Consider
now the transformation h* that changes triangles into squares and squares into tri-
angles, and changes black things into orange ones and orange into black. This
transformation h* is a symmetry of (i) and (ii), and maps the set of physically pos-
sible worlds onto itself. But these worlds are all distinct in structure.!? Physically
realistic examples are easy to find. Whenever you’ve got a theory with only qualita-
tively distinguishable models, any automorphism of the set of physical possibilities
will constitute an example.

For a contrasting example in which qualities are preserved and in which there
are distinct, indiscernible worlds, take any theory, add to it a hidden, unmeasurable
quantity, Q, and let j be the transformation that leaves everything else intact but
permutes the value of Q. Since Q is unmeasurable, it is causally isolated from the
values of all other quantities, and so permuting Q-values at a world is not going to
affect the values of observable or measurable quantities. As long as we don’t add
new laws explicitly mentioning Q and relating them to observable or measurable
quantities, j will be a symmetry of the theory, and among the theory’s models will
be worlds that share a geometry, and all qualitative and relational properties.

A more interesting example is provided by Glymour’s example of the revised
Newtonian theory that replaces Newtonian force with the complex quantity morce +
gorce (1980, pp. 356-62). Let k be the transformation that adds to morce what it
takes from gorce, leaving force unaffected (suppose morce and gorce can take
negative values). The revised theory will be invariant under k, and world w will be
(except in degenerate examples) distinct but indistinguishable from world kw.

Why would Belot have ignored such examples? Perhaps if we focus on geomet-
ric symmetries the distinction between qualitative-structure-preserving and non-
qualitative-structure-preserving symmetries of the laws will not spring to mind.
What distinguishes the geometric symmetries as a class is that they preserve

13 To fill out the example we could add that (i) and (ii) are invariant under Galilean transformations, and that h*
leaves the metrical structure of a world intact.
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qualitative structure; but it is not in general true that symmetries of a theory preserve
the qualitative structure of its models. It is only by contrast with geometric trans-
formations that are not symmetries and symmetries that do not preserve qualitative
structure, that what is special about geometric symmetries emerges. By considering
other symmetries that figure prominently in the literature (e.g. gauge symmetries
and permutation symmetry) we can get a handle on the general physical signif-
icance of symmetries. Transformations that preserve qualitative structure are not
all symmetries of the laws, and transformations that are symmetries of the laws do
not all preserve qualitative structure. Only those that have both features suggest the
presence of superfluous theoretical structure. Only those that have both features
permit a trivial interpretation.'*

6.1 Qualitative indiscernibility with dynamic differences

Belot sometimes speaks as though Leibniz’s Principle of Sufficient Reason (PSR)
enjoins the identification of any pair of qualitatively indistinguishable models of a
theory. He introduces the article, for instance, with the claim (2001, p. 55) that:

a description of a set of possible worlds which includes pairs of worlds with identical
qualitative structures can [and, according to PSR, should] always be taken to correspond to
the sparser set of possibilities which arises when qualitatively identical worlds are identified.

But he can’t mean that.'> Consider the transformation that maps an empty rotating
bucket in a Newtonian world onto a qualitatively indistinguishable bucket at rest,
and maps every other world onto itself. Both are models of Newton’s theory, and
if neither bucket is filled, they are qualitatively indistinguishable. There are un-
doubtedly differences between the two according to Newton’s theory, which would
become manifest if measuring instruments (or water) were introduced into the buck-
ets. But by hypothesis there are only the buckets, and they are therefore the same in
all their qualitative features. PSR, however, ought not to be understood as instruct-
ing us to identify these worlds. It ought to be understood, rather, as counselling
aversion to recognition of dynamical distinctions that have no potential qualitative
effects. By ‘potential qualitative effects’ we mean here qualitative effects that show
up in some physically possible circumstance, according to the theory (i.e. in some
of the theory’s physically possible worlds).'®

14 This provides some insight also into the conditions under which we recognize intrinsic geometric structure,
given that geometric transformations all preserve qualitative structure; viz., when they have potential qualitative
effects.

15" And some of the other things that he says suggest that he doesn’t, though there are still others that make it clear
that he is not simply misspeaking.

16 Belot discloses (in personal correspondence) that he means ‘qualitative’ in a different sense from ours: ‘T use
“qualitative” in the metaphysicians’ sense [to refer simply to the intrinsic properties of an object]; it is, I think,
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The difference is far from trivial. We get the space of metaphysical possibilities,
in physical contexts, by unconstrained recombination from the entities, quantities,
and relations that we take to be the building blocks of the actual world. If we
took the state space of Newtonian mechanics, as suggested by Belot, and simply
identified any pair of qualitatively identical worlds, we would give up combinatorial
structure (the space would contain, for instance, worlds in which there are spinning
water-filled buckets, but no worlds in which there are empty spinning buckets), and
that isn’t something we can surrender just because it happens to suit our theoretical
purposes. One of the reasons why we care about the space of possibilities, one
of the things that makes it an object of physical interest, is that it is related, in
the way expressed by the Principle of Recombination, to the structure of every
world in it. We care about (metaphysical) possibilities, in physical contexts, at least
in part, because they relate in a principled way to the structure of actuality, and
we can’t abandon the relating principle without relinquishing (this aspect of) their
significance.!”

The physical intuition to which Leibniz’s principle answers is that if we are
recognizing a set of possible worlds with a great deal of qualitative redundancy, we
may be recognizing more structure in the actual world than there is good reason
to suppose, and if we can find a way of trimming away some of the fat without
cutting into the meat (i.e. if we can find a way of doing without some of the non-
qualitative structure without losing any qualitative distinctions), we should do so.
But this business of identifying qualitatively indistinguishable possibilities won’t
tell us anything about the structure of the actual world if we give up Recombination.
We don’t understand what the actual world is /ike according to a theory that removes
some of the qualitative redundancy unless we can place it against the background
of a combinatorially structured space. We don’t really understand what a theory
says the building blocks of the actual world are unless we know how to take them
apart and put them back together; that is, unless we know what the theory says the
real degrees of metaphysical freedom are.

much weaker than your usage; and it is not directly founded on considerations involving perception... . We
have not emphasized the difference because it does not affect the counterexamples. We can simply stipulate
in the orange square/black triangle example that the only real, intrinsic properties of the worlds described are
the colour and shape, and there are no more any real, intrinsic properties to distinguish the rotating from the
stationary empty Newtonian bucket worlds than there are qualitative ones. The weakened sense of ‘qualitative’
does make Belot’s discussion less ambitious than one might have hoped; since which properties are qualitative
in the weakened sense is something that is not determined independently of a theory’s interpretation, Belot
is not recommending a general, theory-neutral criterion for identifying superfluous structure. His discussion
applies only after interpretive decisions have been made. See further, below.

There may be a new space, with a combinatorial structure, containing all and only the worlds in the modified
Newtonian one, but the worlds in that space would have anon-Newtonian structure. The claim is that we wouldn’t
understand the physical situations depicted by the modified Newtonian worlds — we wouldn’t understand what
their constituents were, what kinds of entities, quantities, and relations they were really made of — until we saw
them in the context of the new space, until we saw how to take them apart and put them back together.
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To review, then: symmetries of a theory, 7, are transformations that map the
set of physically possible worlds onto itself. Transformations that aren’t sym-
metries of 7, by contrast, sometimes take you from a world that is physically
possible by T’s lights, to one that is not, and can be understood as changing
the world in some dynamically relevant way. Some of these dynamically rele-
vant changes will be visible, but some will have visible effects only under certain
conditions (e.g. the difference between empty Newtonian buckets in rotating and
non-rotating universes). The difference between such worlds is qualitatively poten-
tial because if we filled the buckets with water then, ceteris paribus and keeping
the laws fixed, qualitative differences would emerge. The PSR should be under-
stood as a prohibition on invisible, dynamically irrelevant differences. It should
be thought of as a ban on the recognition of invisible, intrinsic differences that do
not have visible manifestations, under any physically possible conditions, actual or
counterfactual.

Geometric transformations are special in that they preserve qualitative structure,
and so recognizing differences between worlds related by geometric symmetries
is always a violation of the PSR. But symmetries do not in general preserve the
qualitative structure of their models, neither in our sense of ‘qualitative’, nor in
Belot’s weaker sense. If they did, and if we identified all physically possible worlds
related by symmetries, no theory would have more than a single model. Belot has
suggested, in personal correspondence, a restricted notion of symmetry:

I count as symmetries of a theory only those permutations of its space of possible worlds
which preserve the structure defining the dynamics of the theory (thus my symmetries are
diffeomorphisms preserving, say, the Hamiltonian and the symplectic structure or Hilbert
space structure, in typical physics cases).

There is nothing illegitimate about building restrictions into your definitions. But
there is a cost to this. If you define the symmetries of a theory as those that preserve
the structure defining the dynamics, you cannot then use considerations involving
symmetry to see how much dynamical structure is needed to reproduce the empirical
content of a theory, i.e. to reveal dynamical structure that is not really doing any
empirical work. Symmetry is a mathematical notion, and we think it best to keep
our definition of the symmetries of a theory uncontaminated by physics. We also
consider it important that any notion of symmetry used in a special context should
derive from general notions defined for any theory in the same way. Combine
a purely mathematical notion of symmetry with a theory-neutral distinction (as
indispensable precursor to interpretation) between qualitative and non-qualitative
structure in the models, and you have a good guide to identifying superfluous
structures, one whose epistemic motivation is plain, and whose application doesn’t
wait on the very interpretive decisions we want to use it to make.
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6.2 Symmetries of a world, and identity of indiscernibles

The symmetries of a given world, as distinct from the symmetries of a theory, are just
those transformations that map it into itself (its automorphisms). That is the sense in
which a 360° rotation is a symmetry of any letter, while a 180° rotation is a symmetry
of the letter O but not of the letter P. For these symmetries it would certainly make
no sense to suggest that they detect superfluous structure in a particular world. Since
they map the world into itself, they cannot be used to support any claim to the effect
that this possible world is really the same as (represents the same physical situation
as) some other world.

However, if a transformation is a symmetry of some worlds but not others, we can
raise the question whether it does not perhaps preserve all significant structure, and
thus relates only worlds that represent the same way areal world could be. If physical
situations S and S’ are represented as mirror-images of each other, for example, are
there really two distinct physical possibilities being represented, or only one? The
question is: does the mathematical operation correspond to a physical operation?
In applying this transformation are you really reorganizing a world, or mapping it
onto a duplicate, or just permuting insignificant bits of the representation?

There should be a strong suspicion of superfluous structure if two distinct worlds
are related by a transformation that has some world as a fixed point. As an intuitive
example, familiar from much literature, imagine that worlds w;, w;, and w3 have
in them respectively only a left hand, a right hand, and two hands (one right and
one left, which are each other’s mirror-image reflected through a central plane).
Reflection will turn w; into w, and vice versa but turns ws into itself. This is the
clear danger sign that makes us think that w; and w, do not represent two really
distinct possible physical configurations but only one.'®

This historical example has much about it that is questionable and has made it
the topic of a large and diverse literature. Consider a more abstract example, the
four-element group known as Klein’s Viertelgruppe.'® This is a commutative group
with four elements e, a, b, ¢, in which e is the identity element (ex = x for all x),
each element is its own inverse, and if x, y, z are distinct elements other than e then
Xy =2

eabc

eabc
aecbh
bcea

o Qo

cbae

18 Cf. Pooley, this volume.
19 This example is used to advantage in Rynasciewicz (2001).
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Here the element e is uniquely definable. But we cannot construct a uniquely
identifying description for any of the other elements; they are structurally and
qualitatively indiscernible. The automorphisms of this structure are precisely the
permutations of its set of non-identity elements, and only what is invariant under the
automorphisms can be definable. It would however make no sense to suggest that
those elements should therefore be identified. The result would be a two-element
group, and we would have the strange consequence that the Viertelgruppe does not
exist (though there are objects that have this form, plus additional structure).

There are two points to be made here. The first is that the group is invariant under
permutations of the three non-identity elements. Replace a by b and conversely,
and the table is just

ebac

ebac
beca
aceb

o Q TN

cabe

and that is quite obviously the same table as before, written in slightly different
order. This should raise the suspicion that if two worlds are related by such a
permutation, they do not represent two distinct possibilities. But secondly, this
permutation invariance is no basis for suggesting that this world, the Viertelgruppe,
has been redundantly depicted in the above table.?’

6.3 A new sophistical argument

We emphatically used the word ‘suggest’ above: each case has to be examined
separately. Thus we distinguish this topic (symmetries of worlds) very emphatically
from that of qualitative-structure-preserving symmetries of the laws and their clear
implication of superfluous structure.

But there have certainly been suggestions, typically connected with Leibniz’s
Principle of the Identity of Indiscernibles (PII), to draw an exceedingly general
moral. Consider world w3 above consisting of two hands which are each other’s
mirror-image. That world is left unaffected by reflection through its central plane —
conclude then that actually it contains only a single hand! Black’s world consisting
of two identical spheres provides the simplest (if not the most illuminating) example.
Why not conclude that this world actually contains only a single sphere, and is here
redundantly described, as in our own familiar duo of the Evening Star and the
Morning Star??!

20 Cf, French and Rickles, this volume.

21 One of us did at best (on the most charitable reading) come exceedingly close to being taken in by this line of
argument; see van Fraassen (1985, pp. 63-5).
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These arguments are sophistical, trading on an untenable version of PII. There
are undoubtedly cases in which a theory has distinct models that are related by a
qualitative-structure-preserving symmetry of its laws and cannot represent distinct
possibilities. That this is indeed so in a specific case may be suggested by the fact
that this symmetry has some worlds as fixed points. But here, in this sophism, the
inference goes in the opposite direction: to the conclusion that it is those fixed
points which have superfluous structure in themselves, and hence are superfluous
items in the theory’s physical possibility space!

That it is a sophism the very examples of spheres and hands should already
illustrate.?? If they do not, it is because in such fanciful cases the cost of denying
obvious possibilities may not seem so high. But first of all, the other examples we
gave should make the cost quite clear, and secondly, we can put the matter quite
abstractly.??

Suppose that for a certain two-place relation R the following is true in a given
world:

There are objects x and y such that Rxy and not Rxx.

In that case the world contains at least two objects. This follows regardless of
anything else that may be true in this world, and therefore regardless of whether
the objects in question are differentiated in any describable way.

This simple point defeats many a naive version of PII. There are more sophis-
ticated versions that do not fall so easily, but we will not hold them sacrosanct if
they are not tautologous.?*

The main point is also well illustrated by an example Belot cites in his discussion
of whether indiscernibles in a theory’s models can be identified. The logical way to
do that would be to reduce each world modulo the indiscernibility relation (2001,
p- 60):

The upshot: whenever we have a structure that admits non-trivial symmetries, we can factor
these out, constructing a quotient structure.. . .

The example that halts this suggestion in its tracks (suggested to Belot by Kit Fine)
is simple enough (ibid.):

Consider two structures for a given countable set of objects; in one structure that set of
objects is given an ordering isomorphic to the integers, in the other an order isomorphic to
the rationals. The quotient of each structure is just: a single object, related to itself.

Belot notes simply that it is ‘necessary to examine the relation between a structure
and its quotient on a case-by-case basis’ (ibid.). Rather disappointing, if one was

22 See the discussion in van Fraassen (1991, pp. 454—6 and 459-65).
23 Ibid. (p. 456, last paragraph of section 3.2).
24 For a thorough discussion of the issue, with carefully nuanced distinctions, see Saunders, this volume.
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hoping for a general method for wholesale elimination of putative superfluous
structure!”> We can see now, however, what crucial distinction tends to be ignored
in this area. Symmetries of worlds — of single structures meant to represent nature —
can at best offer a suggestion of, or clue to, possible superfluous structure in the
theory. They can certainly not imply that — the world could after all be symmetric
in any way it likes! So a theory must be allowed to have models that have any
conceivable kind of symmetry. It is not the symmetry of any given world, but the
qualitative-structure-preserving symmetries of laws, that can definitively reveal
superfluous structure.

7 The wider theoretical context

Formalisms with little superfluous structure are nice, of course, because they reflect
cleanly the structure of what they represent; they have fewer extra mathematical
hooks on which to hang the mental structures that we project onto the phenomena.
But we want to conclude this general discussion of theory structure with a reflection
on the structure of theorizing.

Methods for removing excess structure are much more than mopping up pro-
cedures. They are not something merely to be done after our representations have
been crafted, like portraitists erasing stray pencil marks, or sculptors removing extra
clay. Methods for removing excess structure are the very heart of theorizing; we
figure out what the world is like by seeing what kinds of representations it supports.
In theorizing one starts, that is to say, with the representations, and works one’s
way towards ideas about the intrinsic character of their common object by a kind
of triangulation.

There are two stages in theory construction. The first is to generate a set of
models rich enough to embed the phenomena, the second is to attempt to sim-
plify those models by exposing and eliminating excess structure. Continuing in
this way the structure of the models is pared down, being careful not to jeopardize
their capacity to embed the phenomena. The whole class is thrown over only if
a new significantly simpler set of models is found.?® These inside-out procedures
for identifying superfluous structure are indispensable, and the identification of
qualitative-structure-preserving symmetries of the laws is paramount among them.

25 Something Belot, in correspondence, disavows: ‘You might wonder, after all these qualifications, what the
project of my paper really is? A modest one: to point out that there will always be available in philosophy of
physics a trick which allows you to pass from a formulation of a theory that admits symmetries to a related one
which does not; and to make a very modest start on assessing the interpretative merits and demerits of making
this move in some classical cases.” Even this modest project, however, cannot proceed without a distinction
between symmetries that are, and symmetries that are not, candidates for reinterpretation. Transformations that
do not preserve qualitative structure, transformations that map observationally distinguishable worlds onto one
another, even if they are symmetries of the laws, are not candidates for reinterpretation.

Or one whose models are demonstrably simpler than our good faith estimation of the potential for simplifying
the ones we have.

26
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If we interpret such transformations as trivial, we drain the structures that distin-
guish the representations they relate of significance, giving us simpler models at no
empirical cost.?’

This two-stage conception of theorizing has many historical illustrations. One
familiar example is provided by the development of quantum mechanics.?® At first
one must be struck by the differences between Schrodinger’s wave mechanics and
Heisenberg’s matrix mechanics. A first simplification came with von Neumann’s
insight into the shared Hilbert space structure, a second with Weyl’s display of the
still more basic group-theoretic structure behind the algebras of observables.?’

A guide for identifying superfluous structure, however, is not a recipe for formu-
lating a nice theory that does without it, that is to say, a local intrinsic description
of the world that has all of the properties we like theories to have. There is no better
illustration of this than the problems, amply chronicled in this volume, associated
with the interpretation of gauge symmetry. Focusing on Yang—Mills theories, we
have local symmetries of the generalized phases associated with the wave functions
of the matter fields that show all the formal signs of revealing superfluous struc-
ture, but we can’t simply excise the problematic structures without rendering the
theory non-local. It seems that we need something in the region of space occupied
by the gauge potentials to explain effects like the Aharanov—Bohm effect in a local
manner. Redhead and Nounou (both this volume) explore the options.

8 Conclusion

We have been exploring the question of how symmetries can function, in the context
of physical theory, as guides to the presence of superfluous structure. The philo-
sophical lesson that can be taken away from the discussion is an insight into what
has emerged as the most characteristic feature of modern physics. The ontologies
of our most fundamental theories are not guided by physical intuition; they are not
shaped by philosophical prejudices, but led, at their best, by the ideal of a kind of
formal simplicity. The history of modern physics has been (to adapt a phrase from
a recent book by Barbour)* ‘a long, sustained effort to shed redundant concepts’,
and symmetries of the right sort, symmetries of the sort that we have been talking
about, can act as beacons of redundancy.

27 The flip-side is, of course, that the larger the set of geometric symmetries of a theory’s laws, the less dynamically
significant spatiotemporal structure it recognizes.

28 We can be brief here; see for example Otavio Bueno’s discussion of this development in the context of the
heuristic value of symmetry oriented theorizing, in his ‘Weyl and von Neumann: symmetry, group theory, and
quantum mechanics’, PITT-PHIL-SCI00000409.

2 See Bub (1981).

30 Barbour (1999). Barbour applies the phrase not to physics, but to the book itself.
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