
Probability in Deterministic Physics 

Author(s): J. T. Ismael 

Source: The Journal of Philosophy , Feb., 2009, Vol. 106, No. 2 (Feb., 2009), pp. 89-108  

Published by: Journal of Philosophy, Inc. 

Stable URL: https://www.jstor.org/stable/20620154

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

is collaborating with JSTOR to digitize, preserve and extend access to The Journal of 
Philosophy

This content downloaded from 
������������76.18.122.75 on Sun, 23 Jul 2023 17:47:06 +00:00������������ 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/20620154


 PROBABILITY  89

 PROBABILITY IN DETERMINISTIC PHYSICS*

 In a deterministic theory, one can deduce the state of the universe
 at any one time from the dynamical laws that govern its evolution
 and its state at any other time. In particular, one can deduce from

 the conditions that obtained at some early boundary condition for the
 universe its state at all subsequent times. It is a piece of well-received
 philosophical common sense that there is no room in a deterministic
 theory for objective probabilities. Arguments will be given below that
 this piece of philosophical common sense is mistaken, and that a prob
 ability measure over the space of physically possible trajectories is an
 indispensable component of any theory?deterministic or otherwise?
 that can be used as a basis for prediction or receive confirmation from
 the evidence.

 Phase space is the central representational space in physics. It is the
 space within which all of the states pertaining to a system are repre
 sented, and it encodes all of the general information that we have
 about those states. To take an obvious example (less obvious examples
 will be given below) the fact that a pair of quantities are represented
 by different dimensions in phase space encodes the fact that they rep
 resent separate degrees of freedom. Physically possible histories are
 represented by trajectories through phase space and in a determinis
 tic theory, when dealing with a closed system, there is (no more than)
 one trajectory through each point. Since the universe as a whole is the
 only truly closed system, this means there is one trajectory through
 each point in the phase space of the universe. Probabilities may be in
 voked in applications of theory, when the state of a system or the values
 of external variables are not known with full precision, but they are
 eliminable given complete knowledge. And they do not appear in the
 statement of the laws. The laws serve simply to identify the physically al
 lowable trajectories. About Newtonian dynamics, Laplace famously said

 given for one instant an intelligence which could comprehend all the
 forces by which nature is animated and the respective situation of the
 beings who compose it?an intelligence sufficiently vast to submit these
 data to analysis?it would embrace in the same formula the movements

 0022-362X/09/0602/89-108  ? 2009 The Journal of Philosophy, Inc.

 * Many thanks to Guido Bacciagaluppi, Huw Price, Elliott Sober, and especially
 Brien Harvey for comments. And I am grateful to audiences at Brown University,
 Sydney University, and the University of Western Ontario where earlier drafts of this
 paper were presented.
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 90  THE JOURNAL OF PHILOSOPHY

 of the greatest bodies of the universe and those of the lightest atom; for
 it, nothing would be uncertain and the future, and the past, would be
 present to its eyes.1

 It is a short step from this to the idea that probabilities invoked in
 classical contexts are subjective rather than objective. If they represent any
 thing, it is facts about our epistemic states, not facts about the world.2
 Karl Popper, and David Lewis, and other influential figures have en
 dorsed this view, categorically rejecting any role for objective probabili
 ties in deterministic contexts. In Popper's words:

 Today I can see why so many determinists, and even ex-determinists who
 believe in the deterministic character of classical physics, seriously be
 lieve in a subjectivist interpretation of probability: it is in a way the only
 reasonable possibility which they can accept: for objective physical prob
 abilities are incompatible with determinism.3

 And it is not just the philosophers; physics textbooks standardly assert
 that it is only with the advent of quantum mechanics where the laws take
 an explicitly probabilistic form that probability has to be taken seriously
 as part of the objective content of the theory.4 Barry Loewer,5 David
 Albert,6 and others have been laboring to obtain recognition for the
 objective character of the probabilities given in the microcanonical prob
 ability distribution in Statistical Mechanics, and Elliott Sober has argued
 for the recognition of objective macroprobabilities.7 But these have not
 gained a wide recognition for the role of probability quite generally. This
 paper will argue from general considerations that any theory capable of
 receiving confirmation from the evidence or generating expectation in
 a realistic setting incorporates a measure over state space as an indis

 1 Pierre Laplace, A Philosophical Essay on Probabilities (1814), F.W. Truscott and F.L.
 Emory, trans. (New York: Kessinger, 2007), p. 4.

 2 Barry Loewer, expressing but not endorsing this reasoning, has written:
 "If the laws are deterministic then the initial conditions of the universe together
 with the laws entail all facts?at least all facts expressible in the vocabulary of the
 theory. But if that is so there is no further fact for a probability statement to be
 about"?"Determinism and Chance," in Studies in the History of Modern Physics,
 xxxii, 4 (2001): 609-20, on p. 609.
 3 Karl Popper, Quantum Theory and the Schism in Physics (New York: Rowman and

 Littlefield, 1985).
 4 Quantum probabilities will be discussed in the sequel to this article. The laws of

 quantum mechanics specify not what will happen, given some initial segment of history,
 but what might happen with such and such probability.

 5 Loewer, "Determinism and Chance," and "David Lewis' Humean Theory of Objec
 tive Chance," Philosophy of Science lxxi, 5 (2004): 1115-25.

 6 Albert, Time and Chance (Cambridge: Harvard, 2000).
 7 Sober, "Evolutionary Theory and the Reality of Macroprobabilities," in Ellery Eells

 and James Fetzer, eds., Probability in Science (Chicago: Open Court, forthcoming).
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 PROBABILITY  91

 pensable component of its objective content. Contrapositively, a theory
 devoid of such a measure is practically devoid of empirical content and
 practically incapable of receiving evidential support.

 There is a very lively debate about the nature of probability (whether
 they are objective or subjective, whether they supervene on nonprob
 abilistic or nonmodal facts, and so on). A two-step approach will be
 favored here, separating what one says while working in the context
 of a physical theory where notions like law and probability and space
 and time are treated as primitive, from and what one says about laws
 or probability or space or time in a meta-scientific voice, where at
 tempts at reduction or analysis can be offered. Aside from a few brief
 comments to address potential concerns of Bayesians, the discussion
 here will stop at the level of physical theory. The suggestion will be sim
 ply that we should recognize a probabilistic postulate as one of the
 standard components of a theoretical package, alongside the laws
 and space of states.

 WHAT DETERMINISM ENTAILS

 It was remarked above that there is only one physically possible trajec
 tory through the phase space of a universe governed by deterministic
 laws. This means that if the state of the universe is known with perfect
 precision at any time, its state at any other can be predicted with cer
 tainty. In physics, however, when one is interested in the universe as a
 whole, one never knows its state with perfect precision, so it is repre
 sented not with a point, but with a finite volume of phase space. When
 one is not interested in the universe as a whole, but in an open sub
 system of the universe, one is still dealing implicitly with finite volumes
 of universal phase space. For the state of an open subsystem of the uni
 verse is a partial specification of the state of the universe as a whole.
 Anything larger than a point-sized volume in the phase space of such
 a system corresponds to a finite volume in the universal phase space
 (extended in all dimensions external to it). When one is dealing with

 finite volumes of phase space, even in a universe governed by determin
 istic laws, one is no longer in a situation in which there is a single trajec
 tory leading from one's starting point. There are multiple trajectories?
 typically, an infinite number?coming out of any finite volume of
 phase space. And dynamical laws that constrain only possibility?even
 deterministic laws that yield a single possibility for every point in phase
 space?are impotent to discriminate between possibilities. They will
 tell us which trajectories are possible, but will be silent about how to
 divide opinion among them.

 In practice, when one is, for example, carrying out an experiment
 on some localized system in the lab, one can ignore the possibility that
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 92  THE JOURNAL OF PHILOSOPHY

 a comet will come at light speed and destroy the apparatus, that the air
 in the room will anti-thermodynamically collect in one corner, or that the
 pointer on our measuring device will be disturbed by a quantum tunnel
 ing event, even though there are models of the physical laws in which
 each of these occurs, because these possibilities have negligible or low
 probability. As possibility goes, they are on a par with those we take seri
 ously (for example, that the result we observed tells us something about
 the system we are measuring). The epistemic symmetry is broken only
 by relative probability. It does not help to say there that many open
 subsystems are approximately closed, for probabilities are needed to

 make out degrees of closure. To say that a system is approximately closed
 is to say that the probability of outside influence is minimized.

 If probabilities are needed to guide expectation under limitations in
 knowledge of the state of the universe, they are needed also to relate
 theory to evidence where it is a question not of logical compatibility,
 but degree of support. Logical compatibility with the data is a very weak
 constraint, certainly not strong enough to underwrite the theoretical
 choices that scientists actually make. In practice, theoretical choices
 between alternatives?from mundane, everyday inferences to choices
 between competing scientific theories?always involve assessments of
 likelihood. The Law of Likelihood says that given a choice between a
 pair of theories H\ and H2 compatible with a body E of evidence, one
 should choose the one that assigns the E a higher probability. Objec
 tive assessments of likelihood make use of a measure that the theory
 itself provides. In assigning a likelihood to Hi, one asks how special or
 contrived the initial conditions have to be by His own lights to gen
 erate the regularities present in the phenomena. In assigning a like
 lihood to H2, one asks how special or contrived or improbable the
 initial conditions have to be by //2 s lights to generate the regularities
 present in the phenomena. How much of what is observed in fact is
 inevitable, and how much is the result of coincidence or accident? If
 we observe a robust correlation between a pair of variables where a
 theory recognizes no connection, that lowers evidential support for
 the theory not because the theory rules it out as a logical matter,
 but because the theory assigns it a low probability. It is unlikely, but
 not impossible, that a pair of independent variables exhibit correla
 tions. In the case of an indeterministic theory, we ask how likely are
 those regularities, given the chances described by the laws. If a theory
 assigns a high probability to one result, but whenever we carry out the
 experiment we always get the opposite, this disconfirms the theory
 not, again, because of a logical incompatibility, but because the theory
 assigns that result a low probability. The likelihood of the theory is a
 measure of how improbable the evidence is, by its own lights, and in
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 PROBABILITY  93

 making relative assessments of likelihood, we always employ a prob
 ability measure.8

 Probability here is playing an indispensable mediating role between
 theory and evidence. Any theory that receives confirmation that favors
 it over empirically adequate alternatives on the basis of likelihood rea
 soning, or generates expectation that discriminates possibilities, has to
 tell us not just what is physically possible relative to a body of evidence,
 but the degree to which the various possibilities are to be expected. The
 kinds of regularities that are actually used, even in the most highly
 regimented experimental contexts (to say nothing of how things
 are out in the wild where expectations are formed about radically
 open systems on the basis of only the roughest information) are reg
 ularities about the probability with which a system that starts out in
 some finite, more or less well-defined, volume of phase space and is
 potentially subject to an indefinite number of potential extruding fac
 tors, ends up in another. Even if the intrinsic state of a local system is
 known with precision arbitrarily close to perfection, that state fills a
 finite volume of the phase space of the universe as a whole. In practice
 to derive expectations for a system S what is done is that one writes
 down everything that is known and thought to be relevant about S,
 about its environment, about relevant influences on it.9 One comes
 up with a physical description as precise as possible in relevant re
 spects.10 That will carve out the volume of phase space of interest.
 He then takes his expectations for S from the behavior of systems
 whose states fall in that subspace, that is, systems that share everything
 that is known about S.11 So, for example, if one wants to know how a
 particle in a certain state will evolve under a specified set of conditions,
 one identifies the subspace of the universal phase space that corre
 sponds to particles of that kind, identifies the volume of that subspace

 8 Employing subjective probabilities in this capacity makes relative likelihood assess
 ments a subjective matter and renders it all but void as an objective basis for choice
 between theories. If the measure is included in the scope of the theory as part of its
 content, the Law of Likelihood can provide a theory-independent measure of degree of
 fit with the evidence. See my "Likelihood Reasoning and Theory Choice" (manuscript).

 9 It is not clear that the notion of relevance can be made out without invoking prob
 ability, for A is a relevant factor if there is a non-negligible probability of influence from
 A. But put this aside.

 10 This is an application of the Principle of Total Evidence, usually credited to
 Rudolph Carnap, Meaning and Necessity (New York: Clarke, 1947).

 11 To know someone is a typical member of a flatly distributed population leaves one
 without information that favors one location over another, to know someone is a typical
 member of an unevenly distributed population is to know something that favors some
 locations, but not enough to locate them in a subpopulation. A typical American, for ex
 ample, is more likely to live in New York than Tucson, but a typical molecule of water in
 the ocean has roughly equal probability in being located in any two volumes of equal size.
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 that corresponds to the relevant state, and applies the dynamical laws
 to determine how states that fall in that volume evolve under the rele

 vant conditions. In doing so, one is effectively assigning to the system
 of interest the profile of the typical ensemble compatible with every
 thing he knows about it. This fixes the values of known variables and
 randomizes over unknown variables. The probability of b on S calculated
 in this way is the probability of a random pick from a typical ensemble
 of S-type systems.

 Even in a deterministic context, in which there is only a single tra
 jectory through every point in phase space, unless one knows the state
 of the universe as a whole with perfect precision, probabilities are un
 avoidable. In practice one is warranted in ignoring most of the uni
 verse when considering the state of a local system because she has a
 probability distribution, at least implicit, that assigns a low probabil
 ity to distorting influences from other parts of the world, that is, a
 probability distribution that defines what is meant by "random" and
 licenses the treatment of variables not represented in the model as
 random. That same probability distribution lets one interpret what
 she does observe. If one gets the same result every time an experiment
 is carried, although it is possible that this is pure coincidence, or that
 there is a string of experimental errors (the lab assistant misread the
 result, there is a freak event inside the measuring apparatus, and so
 on ...), these possibilities have low probability. The more reliably a
 result is observed, and the more robust it is with respect to variation
 in the surrounding circumstances, the more significant it becomes be
 cause, and only because, the probability of coincidence or accident is
 lowered if the result persists over time and across variation. The pos
 sibility of coincidence or accident remains, it is only their probability
 that is diminished. Again, the probabilities are playing a crucial medi
 ating role between evidence and theory.

 The probabilities here are independent of the dynamical laws. If
 one is looking at a finite volume v of state space, there will almost al
 ways be multiple trajectories coming out of v and leading in different
 directions. Some will go up and some will go down, and to form expec
 tations, one needs to know how many of a typical finite set of systems
 whose states begin in v go this way and how many go that. If one wants to
 know the probability that a system whose initial state falls in v is in v*
 after an interval 7, that is to say, she calculates the probability that a
 random pick from a typical ensemble of systems whose states begin
 in v, ends in v*. Dynamical laws that specify only what the physically
 possible trajectories are will not yield these probabilities. And so where
 there is more than one possibility, dynamical laws will not specify how
 to divide opinion among them.
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 Since, in the deterministic case, at least, the need for probabilities
 disappears when one possesses perfectly precise knowledge, it is easy to
 slip into thinking that the probabilities are subjective. If probabilities
 are only needed in forming expectation where there is ignorance, the
 probabilities must express facts about the epistemic states of belief
 forming agents, rather facts about the systems they are forming opin
 ions about. It is true that the probabilities reflect facts about the
 epistemic states of belief-forming agents, but there is a subtle equivoca
 tion in passing from the thought that probabilities provide a measure
 of degree of ignorance to the idea that they express nothing more than
 degree of belief. Credence is not the same as degree of ignorance. To
 characterize one's states as states that reflect a lack of information, one

 needs to invoke a notion of probability that is distinct from credence. A
 flat distribution over a partition of possibilities expresses ignorance
 only if the cells of that partition are equiprobable. Suppose I am at
 tending a hosted dinner and I am uncertain about what will be served.
 If I assign equal credence to anything in the cookbook, that expresses
 ignorance about what my hosts will cook. But I could equally partition
 the possibilities for dinner into Sea Bass on quinoa pilaf on the one
 hand and anything other than Sea Bass on quinoa pilaf on the other,
 and an equal assignment of credence to the cells in this partition ex
 presses quite specific information about the menu. Ignorance is in
 difference between equally probable alternatives, and the credences one
 adopts about 5 when one does not have specific information about S
 will inevitably invoke an objective, statistical notion of probability and
 express beliefs about which alternatives are equally likely to show up in
 a random sample. Credence that favors A over B or B over A, likewise,
 expresses the possession of information only if the expectation of A
 and B would be otherwise equal. A probabilistic postulate provides a
 base-line definition of statistical randomness that allows one to charac

 terize credences as states of knowledge or ignorance.
 These probabilities form part of the empirical content of the theory.

 It was remarked above that in forming expectations for a system S, one
 takes expectations from the behavior of typical systems compatible
 with everything known about S.12 Facts about the behavior of typical
 ensembles of systems whose states span a finite volume of phase space
 are perfectly objective. They are probabilistically related to frequen
 cies, and confirmable or disconfirmable by collecting statistics from
 ensembles. They are as objective, and as empirical, as facts about the

 12 This is the source of the link between single-case and in general probabilities, that
 is, between expectations for behavior of individual systems and frequencies of behaviors
 in ensembles.
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 phases of the moon, or the migration patterns of butterflies. "But
 surely," one might say, "deterministic dynamical laws dictate how any
 ensemble would evolve. If one knows the initial states of the systems of
 which it is composed, one applies the dynamical laws to determine
 their final states, and one is done." That is correct, the problem is not
 that one does not generally know how an ensemble of some specified
 composition will evolve, the problem is that one does not know the com
 position of the typical ensemble. This is a crucial difference. And notice that

 the same will be true in the indeterministic case. The dynamical laws
 there will generate a probability distribution over properties of interest
 for a system whose pure state is known, but they will not say how to mix
 probabilities for different states where there is uncertainty about which
 of them a system is in.

 This is perhaps the deepest lesson of statistical mechanics. One
 does not get a probability distribution out of dynamical laws for free;
 one has to start with a distribution and evolve it forward. Most often

 an initial distribution is obtained by giving a flat distribution over the
 volume of phase space compatible with what we know about a system,
 tacitly applying a principle of indifference to states represented by equal
 volumes thereof. But we can reparameterize the space without affect
 ing the topological relations among states (and hence without affect
 ing Boolean relations among their extensions) or dynamical laws. And
 applying the same procedure under different parameterizations can
 give wildly inconsistent results. Talk about a flat distribution makes sense
 only once the metric of phase space has been fixed, and the practice of
 giving a flat distribution relative to a standard metric to reflect a lack of
 knowledge just expresses the assumption that states that occupy equal
 volumes under the standard metric are equally intrinsically probable, that
 is, that a random pick from a population that spans any two subspaces of
 equal volume is equally likely to yield a system in one as in the other.

 The role that the measure over phase space was playing in generat
 ing probabilities in statistical mechanics was exposed when it was dem
 onstrated that one can hold fixed the laws governing the evolution of
 individual microstates and derive quite different probabilities for evo
 lution on the macrolevel (where macrolevel descriptions are just less
 than perfectly precise descriptions of microbehavior) by inflating some
 macrostates and deflating others. Statistical mechanics taught us to see
 the metric as an independent theoretical variable?one of the things
 that can be played with in bringing theory into line with the evidence.

 What one is playing with when one entertains different hypotheses about
 the relative volumes different states take up in phase space is hypotheses
 about the composition of typical ensembles. The naive expectation would
 be that the typical ensemble is a roughly even composition of macrostates.
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 The hypothesis of microuniformity, by contrast, gives us a composition
 so heavily weighted toward equilibrium states that almost all systems
 in almost all possible universes are in equilibrium.13 Under application
 of the dynamical laws, the hypothesis of microuniformity yields a migra
 tion towards higher entropy states from lower entropy states as byprod
 uct of the difference in phase space volume of states of high and low
 entropy. Overall, there is almost no migration since virtually all systems
 are in states of high entropy. But if our universe is (as the Past Hypothesis
 invites us to suppose) one of those very rare universes in which there are
 a great many systems in low entropy states, migration will be observed,
 and the migration observed will virtually all be in the same direction.

 So to reconnect with the themes above, according statistical me
 chanics the expectation that one should see as many entropy decreasing
 processes as entropy increasing ones depends on a faulty assumption:
 namely, that all macrostates have equal statistical probability in the
 sense that a random pick from a typical ensemble is equally likely to
 yield a system in any chosen macrostate. There is dispute about the
 status and interpretation of statistical mechanical probabilities. But
 one thing that can be uncontroversially learned from that example
 is the purely formal fact that one can get radically different expecta
 tions by adopting different metrical assumptions, even while holding
 the dynamical laws fixed. Dynamical laws alone, even deterministic
 laws that dictate the evolution of a closed system given precise informa
 tion about its state, do not constrain the division of opinion when ini
 tial information is incomplete or less than perfectly precise, or when
 dealing with an open system with limited knowledge of extruding fac
 tors. Talk of dividing opinion evenly among the possibilities?which
 here takes the form of spreading it uniformly over the part of phase
 space whose boundaries reflect our information about the system?
 is well defined only once the metric has been fixed, and only because
 the metric is functioning tacitly as a measure of the relative probability
 that a random pick from a population whose states fall within two spec
 ified subspaces will yield a system in either.
 Although the lesson was one that historically, emerged from statis

 tical mechanics, it has nothing specifically to do with dynamics, and

 13 At all times, the expectation is high entropy. If one is in one of those rare universes
 in which there are many systems in low entropy states, they are almost all evolving to
 states of higher entropy. Higher entropy states are intrinsically so much more likely that
 if one is in a high entropy state one is almost certain to stay there, and if one finds
 oneself in a low entropy state, one is almost certain to evolve into a higher one. The
 composition of any random ensemble of systems is heavily weighted towards high
 entropy states.
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 the point can be illustrated with simpler examples. The need for an
 independent metrical assumption has to do with mixing, and can be

 made in nondynamical terms. Whether dealing with points in phase
 space, cells in a partition, or categories in a taxonomy, dynamical laws
 that give profiles for individual cells need to be supplemented with a
 comparative measure of the sizes of the populations that occupy cells,
 something that specifies how systems distribute themselves among cells
 and can be used to yield the probability that a random pick (from the
 population as a whole, or a subpopulation drawn from a specified col
 lection of cells) will yield a member of the cell in question. One gets
 different expectations depending on which is regarded as partitioning
 them into equally probable classes.14 It is much clearer in finite exam
 ples where one can simply count up the inhabitants. In these cases, the

 size of a cell is given by the number of its inhabitants and probability
 corresponds to proportion. Let us take the set of people in the world
 and partition them by country of birth. Suppose that nationality is
 deterministic with respect to language and car make, so that the coun
 try in which a person is born determines the language she speaks and
 the kind of car she drives. Everybody born in the United States speaks
 American and drives a Ford, everybody born in France speaks French
 and drives a Peugeot, everyone born in Samoa speaks Samoan and
 walks to work, and so on. In forming expectations about a fellow of
 whose country of birth one has no specific knowledge,15 if one naively
 divided opinion evenly among the possibilities for country of birth,
 she would expect him to be equally likely to speak Chinese as Samoan,
 equally likely to drive a Ford as a Peugeot, and so on. She would be
 mistaken, and mistaken for the simple reason that these probabilities
 would not reflect statistics of the properties of interest in the world
 population. Taking the number of people in each cell as a measure of
 its size, let us say that a partition is even with respect to a given popula
 tion just in case it divides the population into cells of equal size. The
 problem with the partition by country is that it is not even with re
 spect to world population. A typical randomly chosen ensemble of world

 14 It does not matter whether we are talking about dynamical laws or a function from
 cell number to properties of interest. It does not matter whether we are talking about
 the deterministic or indeterministic case. And it does not matter whether we are talking
 about finite or infinite populations. In the finite case, size means number; in the infi
 nite case, it means measure, but comparisons of size are no less dispensable in the sec
 ond case than in the first.

 15 That will, in its turn, generate profiles for people of whom we have information
 represented by a probability distribution over some finite region. The typical global
 individual provides a kind of standard or reference point, departures from typicality
 represent knowledge.
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 individuals is not composed of nationalities in equal proportion, and
 probabilities guided by assigning equal probabilities to nationalities will
 not reflect statistics in the global population. Consider by contrast the
 partition of the same population by date of birth. This is not perfectly
 even with respect to population, but it is more nearly so.16 On any given
 day, the number of people born in China will radically outweigh the num
 ber born in Samoa, the number of people born in the United States will
 radically outweigh the number born in France. The expectations formed
 by spreading opinion evenly over the cells of this partition will be quite
 different than those formed by spreading it evenly over the cells of the
 partition by country, and will be more in line with the actual frequencies.

 So, to repeat, when forming expectations for a system S about
 which one has imprecise knowledge, one writes down everything
 known about S and takes expectations for S from typical ensembles
 of systems that share those properties. A complete profile for members
 of each cell does not give a complete profile for populations drawn
 from multiple cells until the proportion that individual cells contribute
 to the combined population is specified. One can derive different ex
 pectations for the global population, or any subpopulation that spans
 cells, by fiddling with how many elements each cell contributes to the
 larger population. Talk of metrics for phase space is just a generaliza
 tion of this. The probability with which an arbitrary pick from the
 population yields a system in a particular state is proportional to the
 volume it occupies in phase space. One can use whatever numbers one
 likes to parameterize phase space, but nonmetric preserving reparame
 terizations will alter expectations under this procedure for forming
 them. What is the right parameterization? That will depend on how sys
 tems actually distribute themselves over phase space. One has to make
 some metrical assumption before expectations can be formed. Expec
 tations derived from a flat distribution over a space whose metric does
 not reflect the way that the systems actually distribute themselves leaves
 one with probabilities distorted in favor of sparsely populated cells.

 Another example of failing to appreciate the need to take account
 of the relative sizes of the cells of a partition in forming expectations,
 interesting because it actually reverses conditional expectations for a
 combined population that hold individually for each of the compo
 nents. The University of California, Berkeley, was very famously sued
 for bias against women applying to grad school. The admission figures
 showed that men applying were more likely than women to be admitted,

 16 Assume, here, that births distribute themselves roughly evenly over the year in
 each country.
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 and the difference was significant. But examining individual depart
 ments found most departments actually showed a slight bias against
 men. There is no paradox here. The explanation was simply that
 women tended to apply to departments with low rates of admission,
 while men tended to apply to departments with high rates of admission.
 The population as a whole (people who apply to grad school) was com
 posed of a set of subpopulations (people who apply to the English
 department, people who apply to the Physics department, and so
 on). In each subpopulation, the rate of acceptance for men was lower
 than that for women, but in the combined population, the rate of ac
 ceptance for women was significantly lower than that for men because
 the composition of the ensemble of women applicants was heavily

 weighted towards departments with low rates of acceptance, while
 the composition of the ensemble of male applicants was weighted
 towards departments with higher rates of acceptance, with the result
 that men had a higher overall probability of being accepted. It is as
 though they were in the same casino, but the women tended to play
 games with a lower chance of success than the men. You can always
 increase your intrinsic probability of winning by playing the game with
 better chances. The correlation between being a woman and being
 rejected was an artifact of the composition of the ensemble of female
 applicants, in just the way that the higher relative probability of speak
 ing English over Samoan is an artifact of the composition of the ensem
 ble of persons, and in just the way that the higher relative probability
 of entropy increasing processes over entropy decreasing ones is an
 artifact of the composition of typical ensembles in worlds that start
 out in a state of low entropy.

 Another example of the way that an uneven partition can artificially
 favor some elements is that I am the most hyperlinked 'Jenann' on the
 internet. If one googles 'Jenann', links to me, or pages of mine, come
 up first, second, third, and fourth. But David Chalmers is not the most
 hyperlinked 'David' on the internet, and Saul Kripke is not the most
 hyperlinked 'Saul' on the internet. That does not mean that I am more
 famous than David Chalmers or Saul Kripke. The reason is that there
 are fewer Jenanns than there are Davids or Sauls (at least among the
 relevant population), and so I am more intrinsically likely to be most
 linked among my conomials. I am a big fish only relative to the size of

 my pond. The pond of my conomials is ever so much smaller than the
 pond of Davids or Sauls.

 PRINCIPLE OF INDIFFERENCE

 Some will have already spotted a connection with that notorious
 principle of probabilistic reasoning that has fallen into ill repute: the
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 Principle of Indifference (PI).17 PI enjoins that given a set of possi
 bilities and no specific reason for thinking one obtains rather than
 another, they should be assigned equal probability. It captures the
 intuition that, for example, if one has a six-headed die, one should
 assign probability 1/6 to each face on any given roll, or if one is pre
 sented with a spinning wheel labeled with numbers in the interval
 0>x>l, one should assign equal probabilities to obtaining a number
 greater than 0.5 and less than 0.5 on a random spin of the wheel.
 There is a wealth of counterexamples to PI that derive inconsistent
 results by applying the principle to the same events under different
 descriptions or considered as part of different partitions. Here is an
 especially simple one:18 A factory produces cubes with side lengths
 up to 2 cm. What is the probability that a randomly chosen cube has
 side length under 1 cm? Apply PI to side length, one gets the answer
 1/2. A factory produces cubes with face area up to 4 cm2. What is the
 probability that a randomly chosen cube has face area under 1 cm2?
 Apply PI to face area and one gets the answer 1/4. These are the
 same problem under different descriptions. One gets contradictory
 answers because application of PI to side length is tantamount to as
 suming that the factory produces cubes whose sides show a uniform
 distribution in length, whereas application of PI to face area is tanta
 mount to assuming that the factory produces cubes whose faces show
 a uniform distribution in area. But a production process uniformly
 distributed in side lengths produces a different distribution of cube
 volumes than a process uniformly distributed in face areas.

 The spread of cube volumes depends on whether one assumes uni
 formity over side length or face area, and which of these assumptions
 is correct is a question of fact. It is a matter of which partition is in
 fact even, determined by statistics for the cubes the factory actually
 turns out. PI will give the right results if and only z/applied to the parti
 tion that actually divides the cubes coming out of the factory into

 17 This is also relevant to the Doomsday argument and Shooting Room set-up. In the
 Doomsday case, the natural metric imposed by supposing a person to be equally likely
 to live at any given time, and in the shooting room the metric imposed by regarding an
 arbitrary player to be equally likely to be playing in any given cycle of the game are what
 generate the mistaken expectations. Partitioning the population by date of birth, or
 partitioning players by game cycle, does not divide it into equally sized cells and expec
 tations derived by projecting relative frequency in population overall is weighted in
 favor of later cells. An arbitrary member of the population is much more likely to live
 to see Doomsday and an arbitrary player of the shooting game is 9 times more likely to

 win than to die, though the chance of Doomsday at any one time is as likely as at any
 other, and the chance of losing in any cycle of the shooting game is just as likely as that
 of winning.

 18 Derived from Bas van Frasssen, Laws and Symmetry (New York: Oxford, 1989).
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 Length Area
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 Figure 1: The top two panels represent uniformity in length and area. The
 bottom two panels show how these uniform distributions change when
 mapped to volume. A process uniform in length produces a different set
 of volumes than a process uniform in area.

 equally sized classes. That is an unavoidably empirical question. There
 is no more a way of identifying the even partition from logical princi
 ples than there is of using such principles to divine what the factory
 heads decide at this year's corporate convention. Given a random spin
 of the wheel whose edges are labeled between 0 and 1, should one
 spread probability uniformly over equal intervals? Or should one use
 some other function? There are as many ways of spreading probability
 over the interval 0<x<l as there are real-valued functions whose argu
 ments in that interval sum to 1. Which is correct depends on whether
 the wheel spins at uniform speed, and how numbers are actually dis
 tributed around the wheel. And, again, that is an unavoidably empiri
 cal matter. What is right for one wheel will be wrong for another. When
 PI is applied to reflect a lack of specific information about a system, it
 can be done in a well-defined manner only against the background of
 general information about how properties of interest distribute them
 selves across the population from which the system is drawn. Consider
 a circle of finite volume on which all colors in the visible spectrum are
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 represented. If asked for the probability that a randomly chosen sur
 face will have a color that falls on the top half of the wheel, many will
 automatically answer lA. This response is correct assuming the standard
 representation of the spectrum on which colors separated by equal
 wavelengths are separated by equal volumes on the circle. But it is per
 fectly possible to crowd all colors except for a particular shade of deep
 purple into the bottom half of the wheel. Nothing said when the ques
 tion was introduced specified how colors were to be distributed around
 the circle, and the answer would be wrong on this representation. The

 ways families of properties are represented visually and imaginatively
 almost always incorporate assumptions, rarely explicit, about statistical
 probability, that is, the probability that a random pick from a typical
 ensemble of systems of the relevant type will have the property or prop
 erties of interest. It is these assumptions that are made explicit when
 their implications are drawn out in applications of PI. Richard Von

 Mises, discussing Bertand's chord paradox, says the same thing about
 the absence of formal criteria for identifying the right metric. By
 'coordinate system', here, he means parameterization:

 ... the assumption of a 'uniform distribution' means something different
 in different co-ordinate systems. No general prescription for selecting
 'correct' co-ordinates can be given, and there can therefore be no gen
 eral preference for one of the many possible uniform distributions.19

 Although one is rarely conscious that one is doing it, one chooses
 parameters that reflect one's metrical assumptions, and it is really the
 metrical assumptions built into the choice of parameters that under
 writes the practice of assigning uniform distribution to reflect igno
 rance. The metrical assumptions are wholly empirical, and the practice
 is only successful to the degree that they are correct. Assigning prob
 abilities to events to reflect a lack of specific information, that is, a lack
 of information that singles the system of interest out from the crowd,
 requires some general knowledge about the composition of the crowd.
 In physical contexts, this kind of general knowledge is embodied in the

 metrical structure of phase space. Specific information gets used to
 carve out a volume of phase space, but when specific information gives
 out, one gives a flat distribution over the remaining volume and gen
 eral knowledge kicks in. If metrical structure faithfully reflects statisti
 cal probabilities, when it is interpreted by the principle that a random
 pick is equally likely to yield a system in any two equal volumes of the
 space, indifference over the volume of phase space whose boundaries

 19 Von Mises, Probability, Statistics and Truth (New York: Macmillan, 1957), pp. 80-81.
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 reflect the extent of our specific knowledge will give us probabilities
 that reflect statistics in the relevant population.20 We have to make some

 metrical assumption before we can form expectations, expectations
 derived from a flat distribution over an uneven partition or a space
 equal volumes of which do not represent statistically equiprobable
 states is going to leave us with distorted probabilities. In a finite exam
 ple, there is an easy way of identifying the even partitions; we count the
 occupants of cells. In an infinite population, where proportions are
 replaced by measures and there is no intrinsic measure of size of classes,
 identifying the even partition requires all of the tools of modern statis
 tics, and there are no logical guarantees that the statistics in any finite
 sample will be representative.

 HIGHER ORDER IGNORANCE

 Of course one can be ignorant of general matters too, and general
 ignorance will compound with lack of specific information when
 probabilities are calculated. General ignorance is ignorance of how
 properties of interest distribute themselves across the population
 whose boundaries reflect the extent of specific knowledge. It is repre
 sented by mixing probabilities drawn from different hypotheses about
 this distribution.21 So, in the example above, if it is not known how the
 factory makes cubes, or it is not known how numbers are distributed
 around the spinning wheel, but one knows how to partition the alterna
 tives into equiprobable classes, PI can be applied at a higher level by
 forming a mixture weighted to reflect higher order indifference be
 tween equiprobable alternatives. But one does not always know how
 to form an even partition of alternatives, and in some cases it does
 not make sense. This kind of higher order ignorance is complex. It
 remains, however, that the first order content of a physical theory,
 insofar as the theory is used to generate expectation in the face of
 ignorance, includes a probabilistic postulate which serves as part of
 the background against which the impact of incrementally obtained

 20 We have to be careful to understand that the indifference is not over possible
 outcomes for an experiment, but indifference over outcomes generated by the same
 method. Incorporate everything you know about the system into the process that gen
 erates the outcome, and think of selection as a random choice from outcomes gener
 ated by the same process. So, for example, if you are assigning probabilities to a dart
 thrown by John hitting the center circle, you take all of the specific knowledge you have
 of the process, and let the probabilities reflect the distribution of outcomes in that class
 (for example, darts thrown by John from a certain distance in bad light after he has had
 three beers, while he is talking to buddies, and so on).

 21 'Mixing' is a technical notion, the mixture of probabilities P and P* drawn from
 different sample spaces is (aP + ?P*) where a and ? are the relative probabilities of the
 sample spaces from which they are drawn.
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 information is assessed. Phase spaces and state spaces are what statis
 ticians refer to as 'sample spaces'. They embody a great deal of gen
 eral knowledge of an empirical nature, and that knowledge is relied
 on when a theory is used to form expectation on the basis of limited
 specific information.22

 THE LAPLACIAN ARGUMENT

 If what preceded is correct, there ought to be a gap in the knowledge
 of the Laplacian intelligence. There is. It is revealed by the fact that
 the Laplacian intelligence cannot answer problems of the form: 'What
 is the statistical probability with which a system in state A at t ends up
 in state B at t*, given C?' where A and C together fall short of a complete
 specification of the microstate of the universe, and B is fine-grained
 enough not to permit a 1 or 0 value. By hypothesis, the Laplacian
 intelligence knows the microstate of the universe, and he knows the
 dynamical laws, and whenever he tries to make predictions about
 the behavior of a thermodynamic system, he evolves forward the

 microstate, so he never has to worry about probabilities and his predic
 tions are never wrong. His extraordinary specific knowledge keeps him
 from confronting problems of this form. Problems of this form, how
 ever, are the rule for us, and the question is not whether the Laplacian
 intelligence confronts them, but whether he has what he needs to pro
 vide answers. The thermodynamic example demonstrated that he can
 not squeeze answers out of the dynamical laws alone, for one can hold
 the laws fixed and generate radically different answers to questions of
 this form by adopting different probabilistic postulates. Looking at fre
 quencies will provide evidence for probabilities, but as a logical matter
 they do not determine the probabilistic facts. Perhaps, as those that
 defend Humean reductions suppose, facts about probabilities are in
 cluded implicitly in the manifold of categorical fact, not directly in the
 frequencies but along with the laws as part of the best overall system
 atization of the manifold.23 That may be correct, but it is separate from
 the thesis that has been defended here: namely, that any systematiza
 tion that can be used as a basis for prediction or receive confirmation
 from the evidence will incorporate a measure over phase space, and

 22 The boundary between general and specific knowledge is conventional. What
 counts as specific knowledge about a particle in a context in which we are using a
 state space for generic particles (for example, that it is negatively charged) is trivial
 (has probability 1, for every particle) in a context in which we are using a state space
 for electrons.

 23 Loewer, "Determinism and Chance," op. cit., and Lewis, "Humean Supervenience
 Debugged," Mind, cm, 412 (1994): 473-90.
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 the measure will be just as real and objective as, but not reducible to,
 the physical laws.24

 BAYES IANISM, AND THE BEST SYSTEMS ANALYSIS

 A couple of residual remarks are warranted to draw connections to
 other work in the literature. Loewer's discussion of statistical mechan

 ical probabilities in "Determinism and Chance" is in some ways in ac
 cord with the position that has been defended here. His argument
 begins with the so-called Best Systems Analysis of laws. According to
 the Best Systems Analysis, what makes a certain claim about the world
 a law is that it is part of a theoretical package that overall gets the best
 fit with the evidence. The idea is that the correct physical theory will
 be that systematization that achieves the best overall fit with the global
 pattern of local matters of particular fact. He argues on this basis that
 the microcanonical probability distribution associated with statistical

 mechanics has a claim to be included in a theoretical package along
 side the laws because when it is added to the laws, it vastly increases
 the informativeness and fit of the best system. He writes

 If adding a probability distribution over initial conditions?in our exam
 ples over initial conditions of the universe?to other laws greatly
 increases informativeness (in the form of fit) with little sacrifice in sim

 plicity then the system of those laws together with the probability distri
 bution may well be the best systematization of the occurrent facts.25

 I am in full accord that we should regard a probability postulate
 alongside the laws as part of the theoretical package. The differences
 between Loewer s position and mine are these: (i) I have argued that
 we should do this quite generally, not just in the context of statistical
 mechanics, (ii) I think we should take PrG(A/B) as the basic object,
 rather than a distribution over initial conditions. PrG(A/B), recall, is
 defined as the probability that a random pick from I?-systems would
 yield an A. It can be generated from a distribution over initial condi
 tions in the context of deterministic laws, but does not require the
 idea of an initial state and has applicability also in indeterministic con
 texts, (iii) I am resistant to regarding PrG(A/B) as a law for reasons
 that are independent of what was said here, and finally (iv) where
 Loewer thinks that including a probabilistic postulate increases fit

 24 What our physical theories do is "solve" the data for generalizable patterns. I am
 arguing here that those generalizable patterns are not just the regularities embodied in
 physical laws, but patterns of migration over state space, not derivable from the laws
 without invoking a measure over state space, patterns that tell us how a group of sys
 tems, distributed across a finite volume of state space redistribute themselves over time.

 25Loewer, "Determinism and Chance," op. cit, p. 10.
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 with the evidence, I think that without a probabilistic postulate, we do
 not have an objective measure of fit with the evidence that goes be
 yond logical compatibility.26

 Note that Bayesians can quite comfortably accept the thesis that a
 probabilistic postulate should be recognized as a standard component
 of a physical theory, even in deterministic contexts. One of the defin
 ing features of Bayesianism is the thesis that all probability is ultimately
 subjective, but there is some equivocation about what this actually en
 tails. Subjective probability measures?in particular, the conditional
 probabilities that govern how belief is updated incrementally in re
 sponse to evidence?encode a lot of information about the probabi
 listic relationships among events. A Bayesian can view a physical
 theory as nothing more than a candidate credence function, that is,
 a regimented rendering of the conditional connections among belief
 that govern the updating of opinion. This is what is known in the lit
 erature as an expert function. Insofar as one is viewing a physical in this
 way, she will have a special reason to recognize a probabilistic postulate
 as part of its content, for without a probabilistic postulate, a theory
 does not constitute a well-defined credence function.

 CONCLUSION

 Arguments have been given here for recognition of a type of probabil
 ity that is more basic than chance, that is not intrinsically dynamical,
 and that is a practically indispensable component of deterministic and
 indeterministic theories alike: FrG(A/B) =def(the probability that a
 random pick from ^-systems will generate a system in A). When A
 and B are dynamical states, FrG(A/B) gives the transition probability
 from B to A. It also gives the transition probability from A to B, and
 the nondynamical probability that a system has one property, given
 that it has another, for example, the probability of being green, given
 the property of being an emerald or the property of being in micro
 state A, given the property of being in macrostate B. It encodes
 virtually all of the inductively important information in a physical
 theory, everything that cannot be strictly deduced from known fact
 via the laws. If one knows enough that the physical laws leave only
 one possibility, the measure is not needed. But absent perfect and pre
 cise knowledge, there is always an indefinite number of possibilities
 and the laws do not discriminate among them. They do not say which
 of a set of possibilities is more or most possible, and so they do not tell
 one how to divide opinion between them. As for the suggestion to

 26 Any use of subjective probabilities will mean that agents with different priors will
 differ in their assessment of relative fit with the evidence.
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 divide opinion equally; 'dividing it equally' is not well defined until a
 metric has been specified. What is really meant when one is instructed
 to divide opinion equally is 'distribute it evenly among equally probable
 alternatives'. That just emphasizes the ineliminability of PrG. If one is
 looking to predict where one does not have complete information,
 or to intervene where one does not have precise control, one needs
 probabilities, and the probabilities have to be objective in the sense
 that they have to reflect the statistics in the population of interest.
 The more detailed one's specific information about the system, and
 the better her knowledge of the statistics, the more likely her success.

 In arguing that a probabilistic postulate should be made one of the
 standardly recognized components of a theoretical package, it is rea
 sonable to ask whether this is intended as a redescription of assump
 tions implicit in practice or a recommendation to begin including a
 probabilistic postulate in statements of theory. The answer is that
 there is both an observation and a recommendation. The observation

 is that insofar as one derives expectations from theory in a real setting,
 one is in fact invoking probabilities. The recommendation is to bring
 the often tacit, intuitive measures employed in practice into the open
 by including them in the explicit content of a theory, where their role
 in generating expectations is made transparent, and where they can
 be subjected to scrutiny and compared with alternatives.

 J.T. ISMAEL
 Centre for Time, University of Sydney
 and University of Arizona
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