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JENANN ISMAEL 

CURIE'S PRINCIPLE 

ABSTRACT. A reading is given of Curie's Principle that the symmetry of a cause is always 
preserved its effects. The truth of the principle is demonstrated and its importance, under 
the proposed reading, is defended. 

"As far as I see, all a priori statements in physics have 

their origin in symmetry." 

(Weyl, Symmetry, p. 126) 

1. INTRODUCTION1 

In 1894 Pierre Curie published a paper in which he stated the principle 
that the symmetry of a cause is always preserved in its effects. The proof 
of the principle is simple, yet far from being recognized as an important 

mathematical truth with wide-ranging applications in physics, when it 

receives any discussion at all, it is either dismissed out of hand or allotted 

the status of a mere methodological guide. Even as a methodological guide 
it is alleged to apply only in deterministic contexts, and hence to hold little 

interest for today's physics. Here are some pronouncements that are typical 
of the literature. 

Apart from being logically incorrect, [Curie's Principle] is in obvious contradiction with 

empirical evidence. (Radicati 1987, 202) 

What is to be said of this fundamental, profound principle that an asymmetry can only 
come from an asymmetry? The first reply is that qua general principle it is most likely false 

and certainly untenable, (van Fraassen 1989, 240) 

Curie's putative principle (even in my formulation, which did not use causal terms) has no 
fundamental ontological status ... it betokens only a thirst for hidden variables, for hidden 
structure that will explain, will answer why? 

- 
and nature may simply reject the question, 

(van Fraassen 1991, 24) 

Grounds given for rejecting the principle are typically one or more of 

the following: 

(i) the principle purports to be a priori but actually rules on an empirical 

question; 
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(ii) the principle is simply false, since nowadays physicists recognize 

many phenomena which spontaneously break the symmetry of the 

preceding conditions; 

(iii) the principle 
- even if it is true for deterministic theories - has no 

application in indeterministic contexts; and finally, 

(iv) the principle, if interpreted in such a way as to make it true, is empty. 

I will argue contra omnes murmurantes: 

(i) that the principle, properly understood, is necessarily true; 

(ii) that instances of (so-called) 'spontaneous symmetry breaking' are not 

counterexamples to it; 

(iii) that even in the context of indeterminism, it remains a powerful heuris 

tic; and finally, 

(iv) that it has important and far-reaching consequences in physics and in 

the philosophy of science quite generally. 

Recognizing the truth of the principle requires properly understanding 

it, and this in turn requires appreciating Curie's basic insight into the 

physical significance of the symmetries of a set of laws and the states 

they relate. It is an insight well worth appreciating, for the physical and 

philosophical rewards are great, and some of these will be indicated in 

what follows. Let's turn to the principle to see what all of the fuss is about. 

2. THE PRINCIPLE 

A physical theory specifies what sorts of objects there are and how they are 

related to one another, so theories in physics 
? at least in part 

? describe 

structures. Any structure uniquely determines a group of transformations 

called its symmetry group, and the study of such groups is the mathe 

matical theory of symmetry. It is a particularly elegant theory in that the 

physically interesting relations between structures receive an exceedingly 

simple expression in terms of relations between their symmetry groups, 
and all of the important particular truths about structures can be derived 

from simple principles relating their symmetries. Curie's Principle is such 

a principle. Curie states it several times in his paper departing little from 

the formulation given in the first paragraph: 

When certain effects show a certain asymmetry, this asymmetry must be found in the causes 

which gave rise to them. (Curie 1894, 401) 
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What the principle says depends crucially on how the terms 'cause' and 

'effect' are understood, so bear with me through the definitions; exeget 
ical support for the reading will be given in Section 9. Let A and B be 

families {A\,Ai...} and {B\,Bi...} respectively, of mutually exclu 
sive and jointly exhaustive event types, and let the statement that A is a 

Curie-cause and B its Curie-effect mean that the physical laws provide a 

many-one mapping of A into B, or - more simply 
- that (relative to the 

laws) A determines B? A and B may be different aspects of the total state 
of one system at a single time, or total states of a system at two different 

times. Curie-causes (and effects) relate to their specifications as physical 

quantities relate to their values. Consider, for example, the Boyle-Charles 
law relating the pressure and volume of an ideal gas to its temperature: 

PV ? kT. The product of the pressure and volume is, in this instance, 
the Curie-cause, the temperature is its Curie-effect, and particular values 

of the two which satisfy the laws are specifications of the same. Simi 

larly, consider the state of an isolated Newtonian system at two different 

times. The Newtonian dynamical laws are deterministic, so the prior state 

is the Curie-cause, the later one is its effect, and pairs of particular states 

which satisfy the equations are specifications. In what follows, I will use 

subscripts to distinguish Curie-causes and effects from specifications, so 

(A, B) will denote a Curie-cause and -effect, whereas (A?, J5?) will denote 

one of its specifications. 

Now, let us call the symmetries common to all specifications of some 

Curie-cause its characteristic symmetries, and let us call idiosyncratic those 

transformations that are symmetries of some but not all specifications. In 

the case of the Boyle-Charles law above, transformations under which all 

specifications of the values of pressure and volume are invariant, e.g., spa 
tial reflections or permutations of the value of some unrelated parameter, 
are characteristic symmetries of the Curie-cause. By contrast, transforma 

tions under which only some specifications are invariant, are idiosyncratic 

symmetries of those specifications. Exchange of the values of temperature 
and pressure (in standard units), for example, is an idiosyncratic symme 

try only of states for which the two happen to be equal. Likewise, in the 

case of the Newtonian dynamical laws, transformations under which all 

states are invariant, e.g., simple spatial displacements, are characteristic 

symmetries of the Curie-cause, whereas transformations under which only 
some states are invariant, e.g., exchange of values of mass and acceleration, 
are idiosyncratic symmetries of those states. I propose that we interpret 
'cause' and 'effect' in Curie's statement of his principle as Curie-cause 

and Curie-effect. The content of the principle, then, is that 



170 JENANN ISMAEL 

all characteristic symmetries of a Curie-cause are also characteristic symmetries of its 

effect. 

Equivalently, 

if T is an idiosyncractic asymmetry of any specification of a Curie-effect, then it is also an 

idiosyncratic asymmetry of some specification of the corresponding Curie-cause.3 

3. THE PROOF 

The proof of the principle follows almost immediately from the definitions 
in the preceding section. The laws of a deterministic theory enable the 

Curie-effect B to be derived from the cause A, and can be represented as 

a mapping of the set of possible specifications of A into the set of possible 

specifications of B, equivalent to a set (usually infinite) of ordered pairs 

(Ai, Bi) where each (Au Bi) is a solution to the laws. If (Ai, Bi) is such 
a pair and T is a transformation which acts on A and B, then T takes 

(Ai, Bi) onto (TAi, TBi). Now, suppose Curie's principle isn't true. Then 

there is some T, and some pair of solutions of the laws (Ai, Bi) and (TAi, 

TBi) such that TAj 
= 

Aj but TBj ^ Bj.4 But the laws are deterministic, 
so any Curie-cause has only one physically possible effect among the B's 

and it follows ? 
contrary to the hypothesis 

? that TBj 
= 

Bj, and Curie's 

Principle is true after all. If A is a Curie-cause of B and T is a characteristic 

symmetry of A (i.e. if it acts as the identity on each specification Ai of A), 
it had better act as the identity on each Bi as well. 

Let me emphasize that the asymmetries in question are characteristic; T 

is a characteristic symmetry of A iff it is a symmetry of each of the Ai 's (i.e., 

?^for all Ai, (TAi = 
Ai)), and it is a characteristic symmetry of B iff it is a 

symmetry of each of the Bi's. If this is not kept in mind, there is a temptation 
to think that cases like the following provide counterexamples: consider 

a world consisting of two types of particle, bald and hairy, governed by 
deterministic dynamical laws which prescribe that all hairy particles decay 
into bald ones, but bald ones never decay into hairy ones. Take as the 

Curie-cause partial state-descriptions of the form 

( # of hairy particles present, # of bald particles present) 

and consider the transformation T that replaces all bald particles with hairy 
ones and hairy particles with bald ones 

T : (ra,n) -? (n,m). 
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Now, the state description A\ 
= 

(3,3) nomologically determines B\ 
= 

(0,6), and T is a symmetry of A but not a symmetry of J3.5 This is correct, 
but it does not constitute a counterexample to Curie's Principle because 

T is not a characteristic symmetry of A, it is merely an idiosyncratic 

symmetry of A\. The Ai 's are essentially ordered pairs, for they are not all 

invariant under exchange of bald and hairy particles; having 6 bald and 0 

hairy particles is quite different from having 0 bald and 6 hairy ones. 

It may still seem that I have pulled a rabbit out of a hat: I have purported 
to show that it is impossible to write down a set of deterministic equations 
that carries the state of a system characterized by certain characteristic 

symmetries onto a state that lacks those symmetries. Even if this is plausible 

enough with respect to non-geometric transforamtions like the one above, 
one might expect geometric transformations to provide counterexamples. 
For the sake of uniformity in talking about geometric transformations, 
and for reasons that will be given in Section 4, I will restrict attention 

to the generally covariant formulations of theories and I will assume that 

the transformations in question are manifold automorphisms, i.e. one-one 

suitably continuous and differentiable mappings of a manifold M into M. 

A system of equations is covariant under a transformation T just in case 

for any (A, B) that is a model of the equations, (TA, TB) is a model 
as well; and a system of equations is generally covariant just in case it is 

covariant under arbitrary manifold automorphisms.6 No generality is lost 

because all theories can be given a generally covariant formulation and any 
transformation can be represented as a manifold automorphism.7 

Now, imagine a universe which exists for exactly a minute and consists 

of a sphere which gradually deforms into an ellipse; surely it is possible 
to write down a deterministic equation describing the evolution of the 

sphere. Try to do it, however, and you will find that you will need to 

include a parameter which takes different values for different directions in 

space, i.e. a parameter whose value is not invariant under arbitrary spatial 
rotations. You will need to do so because you will need to distinguish the 

direction along which the sphere elongates. This is precisely to recognize a 

characteristic asymmetry in the Curie-cause of the elongation of the sphere. 

Nothing very mysterious is going on here: if A is the Curie-cause of B, 
then A nomologically determines B. This means that there is a many-one 

mapping from the set of specifications of A into the set of specifications of 

B, so different BiS always (i.e. in all physically possible worlds) 'come 

from' different A?'s. From this it follows straight-away that the intrinsic 

asymmetries of B are also intrinsic asymmetries of A.8 
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4. INTERPRETATION OF THE PRINCIPLE 

Let me spell this out in a way that brings out the physical significance 
of the symmetries of a set of equations: instead of thinking of them as 

automorphisms of the set of solutions, we should think of them as the set 

of transformations among the values of relevant parameters which preserve 
their truth. The symmetries of a set of equations determining one among a 

family B of alternatives, then, correspond physically to either 

(i) permutations of the values of i?-irrelevant parameters, or 

(ii) irrelevant permutations of 5-relevant parameters, i.e. transformations 

which either map them onto themselves or are accompanied by com 

pensating transformations in the values of other parameters in such a 

way as to preserve the relation described by the law. 

The key to understanding Curie's Principle is to focus on the contra 

positive; transformations which aren 't symmetries correspond physical 

ly to relevant permutations of the values of relevant parameters. This is 

easy to see in the case of non-geometric asymmetries, since these cor 

respond to the transformations of values of parameters in the equation 

expressing the laws in question, but it has not always been so transparent 
in the case of geometric symmetries. The problem is that if dynamical 
theories are formulated in their traditional coordinate-dependent manner 

and geometric transformations are represented as transformations between 

coordinate-systems, T may be an asymmetry of the laws determining B, 
even though no T-asymmetric parameter appears in the ^-determining 

equations. This, combined with the historical confusion about the precise 
nature of the coordinate-dependence, obscured the physical significance 
of geometric transformations for generations. It is only in hindsight and 

by concentrating on their coordinate-mdependent (i.e. generally covariant) 
formulations that it becomes clear that geometric asymmetries of a set of 

5-determining laws can be understood in precisely the same manner as 

their non-geometric asymmetries, viz. as relevant permutations of the val 

ues of irrelevant parameters. And this is because it is only in the generally 
covariant formulations that the geometric asymmetries of the laws change 
the value of some parameter in the ??-determining equations. 

A slightly more detailed discussion is given in the appendix, but a 

quick example will help to illustrate the kind of confusion encouraged 

by the coordinate-dependent style of formulation. Consider an isolated 

Newtonian system consisting of a ball at rest on a frictionless surface. Let 

A\ be the coordinate description of the state of the ball at a time t\ and B\ 

its state one minute later at ti relative to a coordinate system with respect 
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to which the ball is at rest. Suppose that the ball remains isolated in the 

interim. (A\, B\) is a solution to Newton's laws, and since the laws are 

deterministic, A\ is the Curie-cause of B\. Now, consider the coordinate 

transformation T which takes every point (x, y, z, t) onto the corresponding 

point (x, y, z + at2, t). T carries (A\, B\) onto (TA\, TB\) which has 
the ball spontaneously accelerating in the z direction with no force acting 
on it, so although (A\, B\) is a solution to the laws, (TA\, TB\) is 
not. The situation is usually described by saying that Newton's laws hold 

'relative to' the first coordinate system but not 'relative to' the second, 
and hence are not covariant with respect to transformations between the 

two. A better way to describe it is to say that there is some dynamically 
relevant difference between (A\, B\) and (TA\, TB\), a difference which 

is obscured by the fact that they get the same coordinate-description, simply 
relative to different coordinate systems. For surely, one is inclined to think, 
it doesn't matter which coordinate system one describes a given system in 

terms of. The difference shows up much more clearly on their coordinate 

independent representations where there is no relativity to a coordinate 

system and the difference between (A\,B\) and (TA\, TB\) is explicitly 
represented. 

This might be a good place to pause and say a word about the relation 

of Curie-causes and -effects to what we ordinarily call initial and final 

conditions. On the one hand, we think of the initial conditions relevant to 

some effect as the set of conditions which - 
by the lights of our theory 

- 

are sufficient to ensure its appearance, in the sense that in all models of the 

theory in which the initial conditions obtain, the effect obtains also (and 
which are such that, moreover, this is not true of any proper subset of them). 
On the other hand, we don't typically include among the initial conditions 

relevant to an effect B everything that goes into the specification of its 

Curie-cause, A. In particular, we don't include the intrinsic spatiotemporal 
structures which distinguish systems related by a geometric transformation 

that is not a symmetry of the laws. With respect to the Newtonian ball above, 
for example, something which fixes the inertial or non-inertial character 

of the system's motion must be included in A, but there is nothing in what 

we usually regard as the relevant initial conditions which does that, so 

these cannot be identified with the Curie-cause of B.9 I think this is a real 

tension in our use of the notion of initial conditions. Whether we want 

to revise it by giving up the gloss, or by extending the notion of initial 

conditions so that they include everything that goes into the specification 
of the Curie-cause, is up for grabs. 
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5. HOW ONE COULD DOUBT THE PRINCIPLE 

Curie's Principle appears so simple and obvious on the reading I have given 
that some explanation is needed for why people have doubted it. There are a 

lot of ways one might go wrong: one reason, surely, is the general confusion 

surrounding the physical significance of geometric transformations, but 

there are others. Among them is the fact that Curie seems to have assumed 

that the world is governed by deterministic laws and so he often speaks 
as though we can infer simply from the existence of an asymmetry in the 

state of a system at a time, that there was an asymmetry in the state which 

preceded or that asymmetric causes intervened from the outside. This is 

a mistake; the world might be - and according to our current theories 

is ? riddled throughout with indeterministic events. We should keep the 

assumption of determinism separate from Curie's Principle and allow for 

indeterminism by reformulating the principle to say that we can infer from 

the existence of the asymmetry in some individual effect either that there 

was an asymmetry in the Curie-cause or that there was no Curie-cause. This 

is not to suggest, however, that the principle is useless in indeterministic 

contexts; far from it, but I will leave its application in such contexts to 

Section 6. 

Another way to doubt the principle is to restrict what counts as a cause 

in such a way as to rule out some of the conditions which go into the 

specification of the Curie-cause. Return again to the Newtonian ball of 

the last section; I said that something which fixes whether the system is 

moving inertially or accelerating must be included in the Curie-cause. One 

might insist that no such thing could be included in the cause because the 

state of motion of a system is not one of its intrinsic features and only 
intrinsic features can be counted among the causes of its behavior. I don't 

think there is much to be said for such a position; it is clear from the 

examples Curie uses in his paper to illustrate the principle that he had no 
such restricted notion of cause in mind, nor is it consistent with our usage 
in either scientific or non-scientific contexts. We count the speed at which 

the car was traveling among the causes of the accident, and the differences 

in the velocity of light in different media among the causes of refraction. 

Yet another way to doubt the principle, and a particularly prevalent one, 
stems from a faulty definition of symmetry. It is related to the confusions 

encouraged by the coordinate-dependent style of formulation mentioned 

in the last section, and is illustrated by A.F. Chalmers in a 1970 paper. 
Chalmers writes: 

In a deterministic theory, Curie's Principle will be satisfied for a transformation T if the 
laws of the theory are invariant under T, for if neither a cause nor the appropriate laws 

change under T, the derivation of the corresponding effect will take an identical form 



CURIE'S PRINCIPLE 175 

for the transformed and untransformed system and will yield identical expressions for the 
effect. (Chalmers 1970, 133) 

Chalmers restricts the application of the principle to transformations which 

are symmetries of the laws, because he thinks it would otherwise be vio 

lated by situations of the following kind: a law which is asymmetric with 

respect to T takes initial conditions symmetric with respect to T onto final 

conditions not so symmetric. For example, dynamical laws asymmetric 
under spatial reflection will evolve an experimental set-up which is sym 
metric under reflection onto one that is not. Suppose, we place a bit of 

cobalt-60 in a magnetic field created by a ring current in a wire, and two 

feet away, the mirror image of the (cobalt + ring) set-up. The combined 

system [(cobalt + ring)r + (cobalt + ring)i] is symmetric with respect to 
reflection through the plane P separating the right system from the left, 
but the laws predict that in both subsystems the cobalt-60 atoms will decay 

significantly more often on the right side. This means that the evolution 

of the combined system will not be symmetric with respect to reflection 

through P, for the reflection of the right system should show a prevalence 
of decay on the left, instead of the right. 

Is this a situation in which Curie's Principle is violated? No. A moment 

of thought should convince one that insofar as the laws predict the lop 
sided result, the initial experimental set-up cannot be symmetric under 

reflection. The theoretical description of the (cobalt + ring)r and (cobalt + 

ring)i cannot be the same because the two will evolve differently and the 

differences in the evolution are predicted by the laws (prevalence of decay 
in the direction of the field for one, and against the direction of the field for 

the other). Chalmers' confusion is the result of his definition of symmetry. 

Immediately preceding the passage quoted above he writes: 

Any transformation of the co-ordinate system that leaves the mathematical form of a law 

unchanged is a symmetry (or invariance transformation) for this law. (Chalmers 1970, 144) 

He is falling prey here to a mistake that has a long and venerable history. 
Since it has been clearly discussed and diagnosed by others, and since 

I discuss it in detail elsewhere, I will be short with it.10 Chalmers' def 

inition identifies the symmetries of a law with the transformations in its 
covariance group, i.e. the group of those transformations which preserve its 

truth. I mentioned above that there are two ways of formulating dynamical 
theories: 

(i) in the traditional style which makes use of coordinate systems and with 

respect to geometric transformations are expressed as transformations 

between coordinate systems, and 
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(ii) in a coordinate independent-style in which geometric transformations 

take the form of manifold automorphisms, one-one, suitably continu 
ous and differentiable mappings of neighborhoods of M into M. 

Any theory whatsoever can be formulated in the latter style, and ? so 

formulated ? is covariant under arbitrary transformations. If we accept 
Chalmers' identification of the symmetries of a set of laws with its covari 

ance group, we will have to say that any law can be written in a form in 

which it is symmetric with respect to arbitrary transformations. Moreover, 
we will have to admit that the symmetries of a given law are not invariant 

under translation from one formulation into a mathematically equivalent 
one: formulated in a coordinate-independent manner its symmetries will 

be the group G of all one-one sufficiently continuous and differentiable 

transformations, and formulated in coordinate-dependent but mathemati 

cally equivalent manner its symmetries will form a proper subgroup of G. 

Clearly this isn't right. The symmetries of a set of equations are the auto 

morphisms of its set of solutions only when that set is well defined, i.e., 
when it is the same independent of its relation to any coordinate system, 
and this is so only when it is given a generally covariant formulation. If 

Chalmers had been thinking in terms of such a formulation, his mistake 

would have been clear to him because the left and right subsystems would 

have been distinguished by the value of some parameter which is not invari 

ant under reflection. This, again, is why I suggested we restrict our attention 

to the generally covariant formulations of theories, in the hope that we can 

avoid some of the confusions encouraged by the coordinate-dependent 

style. 

6. THE PRINCIPLE IN INDETERMINISTIC CONTEXTS 

I have suggested that we read Curie's Principle as an observation about how 

the symmetries of some effect are related to those of the conditions which 

determine it, if such there be. The 'if such there be' expresses a significant 

restriction, for the deterministic theories which ruled physics in Curie's day 
have been superseded by quantum mechanics together with its notorious 

indeterminism. So the question arises: does Curie's Principle have any 

application where the laws in question are /?deterministic, and in particular, 
does it have any application in the context of quantum phenomena? 

The answer is, in both cases, yes. The difference between determinis 

tic and indeterministic laws is that the former map state-descriptions onto 

state-descriptions whereas the latter map state-descriptions onto proba 

bility functions which define a distribution over the set of possible state 
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descriptions.11 The Curie-effect of an indeterministic law is just the result 

ing function, and its asymmetries are defined as follows: T is an asym 

metry of a probability function p just in case there is some Bi such that 

p(Bi) ?? p(TBi). In the last section, I described experiments in which 
atoms of cobalt-60 placed in a magnetic field show a prevalence of decay 
on the left over the right. Experiments like these were first carried out by 

Wu at Columbia in 1956, and prompted the recognition of the asymmetry 
of the laws with respect to spatial reflection. The context is an indeter 

ministic one, and the recognition of the asymmetry of the laws involves 

an application of Curie's Principle: the direction of decay is in each case 

regarded as undetermined, but the laws are assumed to entail a probability 
distribution over possible directions of decay which explains the relative 

frequency of directions in a long run of tests. The left/right asymmetric 
effect which requires explanation, then, is not the direction of any individ 

ual decay event but the probability distribution which favors left over right 
directions of decay. The significantly greater frequency of left-side decays 

makes for a left/right asymmetry in the Curie-effect, and hence by Curie's 

Principle, the Curie-cause A of B cannot be intrinsically symmetric under 

exchange of left and right. 
The principle has another role in indeterministic contexts, for it suggests 

a precise criterion for separating the chancy from the law-governed aspects 
of a system. Define the coarse-state of a system governed by an indetermin 

istic law as the most complete state-description Bc such that p(Bc) 
= 1. 

If we call the state-descriptions over which the distribution is given the 

fine-states, the coarse-state determined by a given probability function is 

the incomplete state-description which includes all and only those features 

common to all of the fine-states which get a non-zero probability. Now 

we can say that transformations which are symmetries of the coarse state 

but not symmetries of the fine states will in general be permutations of 

chancy features of the system. Consider, for instance, the indeterministic 

process in which an alpha-particle is emitted from a radioactive nucleus 

and suppose that the state of the nucleus is such that the particle is no more 

likely to be emitted in any one direction than another. The coarse state of 

the nucleus is in this case spherically symmetrical but the fine-states are 

not, since each of them specifies a particular direction for emission. Those 

aspects of the fine-states which break the spherical symmetry of the coarse 

state, i.e., the direction in which the particle is actually emitted, are just its 

unpredictable aspects. 
So let it no longer be said that Curie's Principle doesn't apply in indeter 

ministic contexts; it has all the force it does in deterministic contexts, and 

more. Not only does it relate the asymmetries of the probability distribution 
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over possible final states which acts as the Curie-cause in indeterminisitic 

contexts to those of the initial state, but it provides a precise criterion for 

separating the chancy from the law-governed features of the final state. 

Showing how it applies specifically to quantum mechanics is somewhat 

complicated because of interpretive disputes about the theory; the best we 

can do is to divide interpretations into two classes and say how Curie's Prin 

ciple applies to the interpretations in each class. On interpretations which 

incorporate a so-called 'collapse postulate', the state of an isolated system 
evolves deterministically except during 'measurement' when it 'collapses' 
into a state probabilistically determined by its state before the interaction.12 

So on interpretations of quantum mechanics which incorporate a collapse 

postulate, the law which determines the probability distribution over the 

outcomes of measurement interactions for systems given the state of the 

system before interaction, i.e., Born's rule, is treated as an indeterministic 

dynamical law. On interpretations of quantum mechanics which incor 

porate no collapse postulate, by contrast, Born's rule is treated as a law 

of coexistence relating partial state descriptions to a probability distribu 

tion over fuller state descriptions. The former include only the values of 

observables of which the system is in an eigenstate, the latter include the 

values of additional observables.13 In either case, i.e., whether the Born 

probability of a value a for an observable A for a system in a state ^ is 

interpreted as the probability that if we measure A it will evolve into an 

eigenstate of A with eigenvalue a or as the probability that the system in 

fact possesses value a for A, Born's rule is treated as an indeterministic 

law which maps the state-descriptions onto a probability distribution over 

state-descriptions. And in either case, the former is the Curie-cause of the 

latter, and Curie's Principle applies to them just as it does in deterministic 

contexts. 

As to separating the chancy from the law-governed aspects of a quantum 
mechanical system; a system's coarse-state includes values for all observ 

ables of which it is in an eigenstate and is symmetric under permutations 
of the values of observables of which it is not. Its fine-states, on the other 

hand, include values for observables of which it is not in an eigenstate and 

hence are not symmetric under permutations of those values. Moreover, 
there are no other transformations which are asymmetries of the fine-states 

and are not asymmetries of the coarse-state. Applying our criterion for sep 

arating the chancy from the law-governed aspects to quantum mechanical 

systems, then, we get that the values which a system possesses (or comes 

to possess after a measurement of the right sort) for observables of which 

it is not in an eigenstate are chancy, and are ? moreover - the only chancy 
features of its state. This is just the right result. 
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7. SPONTANEOUS SYMMETRY BREAKING 

Having given an argument to the effect that spontaneous symmetry break 

ing is impossible, I had better consider the actual phenomena physicists 
call by that name and show that they do not provide counterexamples. The 

most striking example of abrupt symmetry change, and also one of the first 

to be discovered, is Euler's load: if we take a vertical column and load it 

from the top with a perfectly symmetrical distribution of weight, when the 

load reaches a critical value, the rod will buckle breaking the symmetry 
of the initial conditions. Other examples include the change of symmetry 
that occurs in a liquid uniformly heated from below when the vertical 

temperature gradient reaches a critical value, an effect demonstrated quite 

indisputably in experiments performed by Benard?a colleague of Curie in 

Paris ? in 1900. Poincare - also a Paris colleague of Curie's - discovered 

asymmetric pear-shapes of fast rotating fluid masses in self-gravitating 

equilibrium .. .just to mention a couple of instances which were around 

and available to Curie long before the instances of spontaneous symmetry 

breaking (usually in the contexts of superconductivity and quantum field 

theory) which occupy physicists nowadays. In these cases, as with the 

buckling rod, the symmetry breaks down when a scalar parameter reaches 

a critical value, without the intervention of visibly asymmetric causes, and 

the symmetry of the initial state is larger than that of the resulting state. 

But in light of what preceded, unless these are indeterministic phenomena, 
Curie's Principle is violated. What is going on? 

The clue to the explanation lies in the phrase 'without the intervention 

of visibly asymmetrical causes'. The case of Euler's load, though striking, 
is somewhat different than the others. Here, the buckling of the rod in a 

particular direction appears to be a genuinely indeterministic phenomenon. 
When the load reaches a particular weight, the differential equations which 

express the functional dependence of the behavior of the column on the 

load simply break down. The column buckles, and ? so long as the situa 

tion is perfectly rotationally symmetric 
- there is no predicting beforehand 

the direction in which it will go. The other cases are more interesting, 
and result from the non-linearity of the dynamics.14 With respect to actual 

physical systems, the symmetry of both causes and effects is seldom exact: 

in part because of the impossibility of completely decoupling a system 
from its surroundings, in part because of the inevitable presence of exper 
imental error, and in part because of the presence of fluctuations (whether 
thermal or quantum mechanical). Where the dynamics are governed by 
non-linear equations, it is not true that nearly symmetric causes produce 

nearly symmetric effects or vice versa. On the contrary, not only can large 

asymmetrical causes produce small (even undetectable) effects, but large 
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asymmetric effects may arise from seemingly symmetrical causes. Seem 

ingly symmetrical, but not entirely so; there are always the fluctuations. 

What happens in every case of so-called spontaneous symmetry breaking 
in current physics is that when some (usually scalar) parameter reaches a 

critical value, the symmetric solutions cease to be stable under small exter 

nal chance perturbations, and so pushing the parameter past the critical 

value will make the system vulnerable to perturbations that carry it into 

an asymmetrical state. The symmetrical solution always exists but is not 

always stable for all values of the parameters that enter the equations of 

motion. Where it is not, asymmetrical solutions may appear that are stable, 
thus precipitating a change in the symmetry of the system that appears to 

be occasioned solely by the change of a scalar parameter. In general, if a 

system is non-linear and possesses bifurcation points where a set of sta 

ble solutions of lower symmetry branch off from the original symmetrical 
solution and the system is subject to external chance perturbations, a very 
small chance perturbation may switch the solution to an asymmetrical one. 

It should be clear that there is nothing in this which violates Curie's 

Principle. These are not cases of systems governed by deterministic equa 
tions in which all symmetries of causally relevant factors are not preserved 
in the effect, but rather cases in which the effect of certain causally relevant 

factors (the external perturbations) appear only under certain conditions, 
viz. when some other parameter reaches a critical value. The situation is 

commonplace but particularly striking in non-linear contexts where the 

causes are so small and the effects so large; in such cases, the cause is so 

apparently symmetrical and the effect so evidently not so, but the asym 
metries in the effects are still present in the causes. 

8. THE PRINCIPLE AND HIDDEN VARIABLES 

No discussion of Curie's Principle would be complete without saying some 

thing about its connection with hidden variables. If A is the Curie-cause 

of B, A is fixed (up to a constant) by the values of the parameters on the 

left-hand side of the i?-determining equations in a generally covariant for 

mulation. Curie's Principle entails that if T is a characteristic asymmetry of 

B, dit least one of the parameters which characterizes A is characteristically 

asymmetric with respect to T. Call T a hidden characteristic asymmetry 
of A just in case T is an asymmetry of A, but the specifications A4 and 

TAi are not all distinguishable by unimplemented sight, i.e. in case, for 

all Ai, we cannot commonly distinguish Ai from TAi 'just by looking'.15 
And call T an apparent characteristic asymmetry just in case it is an 

asymmetry which is not hidden. It is certainly possible for apparently T 
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symmetric states to evolve deterministically into apparently T-asymmetric 

states, but Curie's Principle entails that in every such case T is a hidden 

characteristic asymmetry of the initial state. Hence, if an isolated system 
in an apparently symmetric state evolves into a state that is evidently T 

asymmetric, so long as the evolution is deterministic we can conclude 

that the symmetric facade of the initial state was a dupe: it concealed 

all of the characteristic asymmetries revealed in the final state. Molecu 

lar biology is replete with particularly impressive instances of apparently 

T-symmetric conditions giving rise, by evidently deterministic processes, 
to apparently T-asymmetric effects. Frog zygotes, for example, start out 

as spherical cells suspended in an homogenous seeming fluid and develop 
into highly structured organisms; almost every stage in their development 
introduces asymmetries not apparently present in the preceding stage. By 

Curie's Principle, if the process is deterministic, the initial state is?despite 

appearances 
? at least as asymmetric as the final.16 

If we combine Curie's Principle with a methodological principle to the 

effect that the only theoretical reason for postulating a hidden characteristic 

asymmetry is as the nomological determinant of some apparent asymmetry, 
we can derive a great deal about how the apparent structure of the physical 
world relates to the underlying physical structure postulated by our theories. 

For together they entail that the hidden causes postulated by our theories 

should collectively conceal as much asymmetry as is revealed in their 

collective effects and only so much asymmetry as is revealed in their 

collective effects.17 This narrows the class of theories quite drastically, but 

doesn't come close to picking out a unique one. A theory will typically 

regard a single hidden parameter as causally implicated in a wide range of 

distinct effects while being only partially responsible for any given one. So 
even if we know that the asymmetries in any effect are present in its Curie 
cause and we require that Curie-causes have no hidden asymmetries that are 

not asymmetries of their effects, there is still room for differences in theory 
in the way in which the asymmetries get divided up and distributed among 
the individual parameters. There are better ways of doing the dividing up, 
of course, but what they are is a question to which neither Curie's Principle 
nor the above methodological principle, answers. 

9. EXEGETICAL SUPPORT 

There is some unfinished business; I need to address the question of 

whether the reading of Curie's Principle that I have given captures Curie's 
own intentions. Curie writes that "when certain causes produce certain 

effects, the symmetry elements of the causes must be found in the produced 
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effects". This raises two exegetical questions: (i) what is meant by 'cause' 

and 'effect'? and (ii) how do we define the symmetries of the causes and 

effects, so construed? I have read the principle as asserting that the char 

acteristic symmetries of a Curie-cause are also characteristic symmetries 
of its effect, i.e., as asserting that if the laws provide a many-one map 

ping of a family A ? 
{A\, A2, ^3,...} of alternative events into a family 

B = 
{B\, B2,2?3, . 

}, then the transformations which are symmetries of 

all of the Ai s are also symmetries of all of the J3?'s. So far as I can see, no 

other reading of the principle is compatible with the examples with which 

Curie illustrates it and the application which he makes of it in his paper. 
The paper is quite beautiful; in it Curie does much more than simply state 

his principle, he uses it to derive the intrinsic symmetries of the electric and 

magnetic field quantities from the description of certain carefully chosen 

experimental phenomena. The application he makes of the principle in 

these arguments leaves little doubt as to how he intends it to be understood. 

All have the same form: the set of symmetries of a quantity q is shown to 

coincide with a group G by application of Curie's Principle to experimental 
situations in which q figures as part of the effect of some phenomenon and 

the cause of some other. The first is used to establish that the symmetries of 

q include all of the transformations in G, the second is used to establish that 

the symmetries of q include no transformations not in G. The conclusion 

is that the group of intrinsic symmetries of q is exactly G. 

The argument deriving the intrinsic symmetry of the electric field at 

a point, for example, goes like this. Consider the groups of symmetries 
associated, respectively, with 

(A) a cylinder at rest, 

(B) a system consisting of two coaxial cylinders rotating in opposite direc 

tions, 

(C) an arrow, and 

(D) a cylinder rotating about its axis. 

Assume that mass is a scalar quantity, that linear momentum has the 

symmetry of (C), and that angular momentum has the symmetry of (D). 

Now, consider the electric field at the center of a parallel plate condenser 

made up of two oppositely charged discs. The cause of the field has the 

symmetry of (C), with the line through the center of the disks as the 

isotropic axis. From Curie's Principle it follows that the symmetry group 
of the field at the center of the condenser must include the transformations 

in (C). Next, consider a point charge placed at a point p in space where there 

is an electric field. The charge will experience a force which has symmetry 

(C), and so ? 
again from Curie's Principle 

? it follows that the symmetry 
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(C), and so ? 
again from Curie's Principle 

? it follows that the symmetry 

group of the field at p includes only transformations in (C). These together 
entail that the intrinsic symmetry group of the electric field at a point is 

just(C). 
The argument that the intrinsic symmetry of an electric current is also 

(C) follows the same pattern. Curie considers two situations, one in which 

a current is the effect of an electric field and another in which a current is 

the cause of chemical decomposition in electrolysis. Application of Curie's 

Principle to the former establishes that the symmetry of the current is at 

most (C), application of Curie's Principle to the latter establishes that the 

symmetry of the current is at least (C), and it follows that the symmetry 
of an electric current is exactly (C). So, also, goes the argument that the 

magnetic field at a point has the intrinsic symmetry of (D); the relevant 

experimental situations in this case are those in which a magnetic field is 

caused by a current in a circular coil and causes electromagnetic induction, 

respectively. 
In all of these arguments, and in every example Curie discusses in other 

sections of the paper, Curie's Principle is applied to conditions related only 
as Curie-cause to Curie-effect. Curie is quite explicit that this is what he 

intends; he writes "whenever a physical phenomenon is expressed as an 

equation, there is a causal relation between the quantities appearing in both 

terms". Moreover, it is clear that this is all that is required for the validity 
of the arguments. There remains the question of whether the symmetries 
in question are symmetries of particular specifications of Curie-causes 

and -effects or characteristic symmetries of the families as wholes, i.e. 

symmetries of each specification in the two families, respectively. There 

are two reasons for thinking that Curie intends the latter. The first is 

interpretive charity; if we read him as meaning the former, the principle is 

false. Indeed, quite obviously so; the example of bald and hairy particles 

given in Section 2 is a clear counterexample and it is easy to generate 
others. The second reason is that in the above arguments, the existence 

of any specification of A that is T-asymmetric is sufficient to establish 

the T-asymmetry of A, the existence of any specification of B that is T 

asymmetric is sufficient to establish the T-asymmetry of B, and Curie's 

Principle is taken to entail that the asymmetries of B (so established), 
are also asymmetries of A (so established). Curie finds one among the 

possible specifications Aj of A which is T-asymmetric and one among the 

possible specifications Bk of B that is T-asymmetric, and concludes that 

A and B are both T-asymmetric. He does not require that the particular 

T-asymmetric specifications invoked be related as individual cause and 

effect, i.e. he does not require that (Aj, Bk) is itself a solution to the laws. 
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Curie's Principle is often read as though it did, i.e. as though it states that 

the symmetries (idiosyncratic and characteristic alike) of each particular 

specification of a Curie-cause must also be present in the specifications 
of its corresponding effect. And indeed, the principle 

- 
separated from its 

context?is ambiguous between such a reading and the reading I have given, 
but a look at Curie's examples and his own application of the principle in 

the paper is quite enough to clear up the ambiguity. There can be little 

serious doubt as to his real intentions. 

10. IS THE PRINCIPLE TRIVIAL? 

I will take a moment before concluding to fend off the objection that 
Curie's Principle 

? as I've interpreted it ? is trivial. There is one sense in 

which it is trivial, namely that it follows from the definitions of the terms 

in which it is stated. This sort of triviality, however, does not render it 

insignificant, for it must be granted that there are mathematical theorems 

which both follow from the definitions of their terms and have a great 

degree of physical import. A more serious worry is that the Principle is 

not only trivial but too obvious to be interesting. It doesn't require a long 

proof or reveal subtle and unexpected connections; one scarcely needs to 

unpack the definitions to see that it is true. The right way to answer this, 
I think, is to reply that therein lies its beauty. Here is an analogy: any 

plane figure can be represented in either of two ways, by a line diagram 
on a page or by the function which generates it. Some truths about the 

relations between such figures require complicated algebraic proofs but 

are conspicuously true if we look at the corresponding line diagrams, e.g., 
the fact that figure A is embeddable in figure B. Other truths about relations 

between figures are almost impossible to discern from their line drawings 
but are easy to see with a quick peek at the functions which describe 

them, e.g., the fact that A results from the composition of functions which 

generate B and C. One has an elegant way of representing a type of object 
when the most important truths about those objects appear obvious when 

they are so represented. It is nothing more than a recommendation of 

conceiving of physical laws as a function from one set into another and 

attending to the characteristic symmetries of the elements in the two sets, 
that Curie's Principle appears obvious when one does. The substance of the 

principle derives from the fact that the simple relation it expresses between 

the symmetries of the domain and range of a function can often be used 

to draw conclusions about the former which cannot be gleaned directly 
from observation, from information about the latter which can. It lies not 

in seeing that the principle is true, but in recognizing phenomena in the 
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physical world which are related as Curie-cause to -effect, and applying 
Curie's Principle to draw conclusions from the observed asymmetries of 

the latter about the often hidden asymmetries of the former. 

Some instances of such applications that I have mentioned are these: 

(i) the case of the development of frog zygotes described in Section 8 in 
which the apparent determinism of the process, combined with infor 

mation about the evident geometric asymmetries of the final stage, tells 

us a great deal about the hidden structure of the apparently spherically 

symmetric early stages, 

(ii) Curie's arguments, described in Section 9, deriving the characteristic 

symmetries of the electromagnetic field quantities, and finally, 

(iii) also touched on in Section 9, the characteristic asymmetries of 

the appearances, represented by the empirical substructures of a the 

ory's models, must also be characteristic asymmetries of the underly 

ing physical structure postulated by theories and represented by their 

higher-level structure. This expresses the only a priori constraint that 

the appearances place on the higher level theoretical structure of our 

models. 

11. CONCLUSION 

In the year before Curie's paper was published in the Journal de Physique, 

Sophus Lie published the third and final volume of his Theorie der Trans 

formationsgruppen in the preface to which he urged deliberate attention to 

the symmetries of physical laws. Though Lie and Curie were contempo 

raries, their emphases were quite different; Lie focused on the symmetries 
as mathematical properties of the laws, whereas Curie concentrated on the 

characteristic symmetries of the physical states themselves. In the centu 

ry separating us from the years in which those seminal works came out, 

physicists have followed Lie's mathematical emphasis and Curie's basic 

physical insight has been all but lost. 
The insight, as I've suggested, was beautifully simple and quite obvious 

once one adopted Curie's perspective: a physical law can be identified 

with a function from one set of physical states into another. If the law is 

a dynamical law, the states in question are the states of a system at two 

different times; if it is a law of coexistence, they are partial state descriptions 
of a system at a single time. Curie's Principle follows just from the notion 

of such a function; it says that all transformations which are characteristic 

symmetries of the former are also characteristic symmetries of the latter. 

More intuitively, it says that transformations which leave the values of 
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all relevant parameters unchanged also leave unchanged their effects. We 

have seen physical applications of the principle ranging from guiding 
the postulation of hidden variables in theorizing to providing a criterion 
for separating out the chancy aspects of a system's evolution. I have not 

said much about its broader philosophical import, but it should be clear 

that the way symmetries operate in physics suggests an understanding of 

the scientific applications of some philosophically important notions. It 

suggests, in particular, that A is causally relevant to B just in case the B 

determining laws are not symmetric with respect to arbitrary permutations 
of the values of A, and that if (counterfactually) Ai had occurred, then Bi 

would have occurred as well; moreover, if A? had occurred, then no other 

Bi would have. In sum, echoing the first sentence of Curie's paper, I think 

that there is much interest in introducing into philosophy the symmetry 
considerations familiar to physicists, and Curie's Principle is a very good 

place to start. 

APPENDIX: NON-GENERALLY COVARIANT FORMULATIONS AND GEOMETRIC 

TRANSFORMATIONS 

A dynamical theory is typically presented as a state space together with a 

set of laws; if the laws are deterministic, they pick out a group (or semi 

group) of evolution operators {Ud} such that if the state at t is \&, then 

the state at t + d is Ud(^}. A trajectory through the state space ^(t) 
satisfies the laws just in case for all t and d, ^(t + d) 

= 
Ud^(t). If T is a 

transformation defined on the state space, 

(i) T is a symmetry of state * iffT^l 
= * 

(ii) T is a symmetry of a set ? of states iffT ? =def {T* : * in ?} 
(iii) T is a symmetry of the laws iff for all d, TUd 

= 
UdT, i.e. V^T(Ud^) 

= 
Ud(T$). Equivalents, iff Ud 

= 
T~xUdT for all d. 

Now, clearly if * = T* then T(UdV) 
= 

TT-lUdT($) 
= 

UdT^, so 
if T is a symmetry of the initial state and the laws, then it is a symmetry 
of the final state. What is harder to see, but is nevertheless true, is that if 

T is not a symmetry of the laws then it is not a symmetry of the set ^2 ?f 

possible initial states. Let A be the state at some initial time, and let B 

be the state at a final time, and suppose T is an asymmetry of the laws. 

If there exist two physically possible trajectories (A?, Bi) and T(Ai, Bi) 
where Bi ^ TBi, it must also be the case that A? ^ TAi. But if there is 
some Ai such that A? ^ TAi, then T is not an characteristic symmetry of 

A, notwithstanding the fact that in the traditional formulation, A? and TAi 



CURIE'S PRINCIPLE 187 

have the same coordinate-dependent description. For those descriptions are 

given relative to different coordinate systems and there are dynamically 
relevant differences between the manifolds they represent. 

Consider the example I gave in Section 4 of an isolated Newtonian 

system consisting of a ball at rest on a frictionless surface. A\ is the state 

of the ball at a time t\, B\ is its state one minute later at ?2 both in their 

coordinate-dependent form relative to a coordinate system with respect to 

which the ball is at rest; and suppose that the ball remains isolated in the 

interim. (A\, B\) is a solution to Newton's laws, and A\ is the Curie 

cause of B\. Now, consider the coordinate transformation T which takes 

every point (x, y, z, t) onto the corresponding point (x, y, z + at2, t); 
T carries (A\, B\) onto (TAi, TB\) which has the ball spontaneously 
accelerating in the z direction with no force acting on it. Newton's laws 

in their traditional coordinate-dependent representation are not covariant 

with respect to T, and it is evident in this case that the description of the 

ball's trajectory relative to a coordinate system obtained from the original 

by T does not satisfy them. 

What is going on can be described crudely (though well enough for our 

purposes) as follows. There are dynamically relevant differences between 

manifolds represented by Cartesian coordinate-systems moving non 

inertially with respect to one another. Hence, in moving from the mani 

fold represented by the first coordinate system to the manifold represented 

by the second, something on which the dynamical behavior of Newtoni 

an systems depends is changed, so the relativity to a coordinate system 

expresses a dependence on parameters which must be explicitly includ 

ed if one is to formulate laws which hold 'absolutely', i.e. relative to all 

coordinate systems. This is what is done in the generally covariant, or 

'coordinate-independent', representation. Whereas in traditional formula 

tions one states dynamical laws which hold only 'relative to' manifolds 

with particular intrinsic structures and which are hence covariant only 
under automorphisms which preserve those structures, in the generally 
covariant formulations one states laws which explicitly relate dynamical 
behavior to the relevant intrinsic structures. The new laws hold 'relative to' 

all manifolds and are consequently covariant with respect to all transfor 

mations between them. This is why it is true only of the generally covariant 

formulation of a theory that if T is a geometric asymmetry of its laws, there 

is a parameter in the B-determining equations which is not invariant under 

T. In the same way, if we have laws which hold only 'relative to' systems 
of one or another mass, in order to formulate laws which hold for systems 
of any mass, we have to relate the behavior of a system to its mass and 
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a new parameter representing mass (i.e., not invariant under changes in 

mass) will appear in the equations. 

NOTES 

1 
Many, many thanks are due to David Z. Albert, Paul Benacerraf, and Bas van Fraassen; 

and to Elijah Millgram, and Gideon Rosen. 
2 I'll suppress the relativity from here on, though talk of A being the Curie-cause of some 

effect B is always to be understood as tacitly relativized to the laws of a theory. 
3 It follows from the definition of a characteristic symmetry that T is an idiosyncratic 
asymmetry of (i.e. is not a characteristic symmetry of ) some specification of a A (or 

B) iff it is not a characteristic symmetry of A (or B). We get the second formulation of 
Curie's Principle by taking the contrapositive of the first (i.e., if T is not a characteristic 

symmetry of a Curie-effect B, then it is not a characteristic symmetry of its Curie-cause, 

A), and replacing the antecedent and conclusion with their equivalents under the definition 
of characteristic symmetry. 4 Notice that the fact that we can write down pairs of specifications (Ai, Bi) and {TAi, 
TBi), where TAj 

= 
Aj but TBj ^ Bj (as, for example, is the case if A and B are 

far enough apart that T operates on B but not on A) is unimportant. What is ruled out 

by Curie's Principle is the existence of pairs of solutions to the laws (Ai, Bi) and (TAi, 
TBi), such that TAj 

= 
Aj but TBj ? Bj. 

5 
Thanks to an anonymous referee for Philosophy of Science for the example. 

6 
Here, as above, where a definition is given, the defined term is indicated by bold type. 

7 
Let me emphasize that the covariance group and the symmetry group of a theory are 

two different things. The covariance group is the set of coordinate transformations which 

preserve the truth of the laws. The symmetry group of a theory is the set of automorphisms 

of its solution set, the transformations which never take you from a solution onto a non 

solution, or vice versa. 
8 

Since it is not necessarily the case that the A's can be represented as a function of the B's 

(i.e. that the mapping is one-one), it doesn't follow that differences in the A's are always 

accompanied by differences in the B's, and hence it doesn't follow that the asymmetries of 
the A's are also asymmetries of the B's. I will come back to this in Section 8. 
9 We usually regard the positions and momenta of the particles which constitute the ball as 

the relevant initial conditions, without any specification of whether the coordinate system 
with respect to which they are given, is an inertial one. 

10 See J. L. Anderson, Principles of Relativity Physics, New York: Academic Press, (1967), 
pp. 75-83; and M. Friedman, Foundations of Space-time Theories, Princeton, NJ: Princeton 

University Press (1983), pp. 46-62. 
11 

Indeterministic laws which pick out a range of possible states without assigning probabil 
ities, are conceivable, so this is a special case. But it is a case which covers all indeterministic 

laws of which we have actual examples in science, and so it is the important one. 
12 It is a notoriously hard problem for all of the interpretations in this class to characterize 

measurement interactions precisely, but for the purposes of the discussion, we can assume 

the problem has a solution. 
13 Here is how this characterization applies to some of the more familiar no-collapse inter 

pretations: on the Kochen/Healey/Dieks interpretations, the set of observables for which a 

composite (measured system + 
measuring apparatus) system has values, over and above 
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those of which it is in an eigenstate, is determined by the unique biorthogonal decomposi 
tion of the system's state (if such there be, i.e., if there is no degeneracy), and the values the 

system has for those observables is probabilistically determined by applying Born's rule 
to its ^-function. On the modal interpretation of van Fraassen, the additional observables 

are determined by the history of the combined system (whether they have just engaged 
in a measurement interaction and which observable was measured, under some precise 

physical characterization of the conditions under which these obtain), and ?as above ?the 

value those observables have are probabilistically determined by applying Born's rule to 

its ^-function. 
14 

The role of non-linearity explains why all of the early examples come from fluid dynam 

ics. It is an interesting historical fact that although they were being investigated in close 

proximity to Curie, and close to the time he wrote the symmetry paper, neither he nor his 

colleagues appear to have considered them in the light of their symmetry properties. 
15 

'Commonly', here, means something like 'in normal circumstances, with normal vision, 

with due attention and training, etc.'. 
16 
We can think of physical evolution, in fact, as precisely a process wherein hidden struc 

ture is made apparent. The distinction between hidden and apparent asymmetry is 
- as I 

understand it, and in terms more familiar than his own ? 
David Bohm's distinction between 

explicate and implicate order, and conceiving of evolution in these terms is to hin of it as 

what he refers to as explication of implicate order. 
17 

If T is not a symmetry of B, then according to Curie's Principle, there is some parameter 

P which is not invariant under T, and is such that A\ -> B\, Ai -> TB\, and A and 

A! are distinguished by different values of P. If A and A' are not observationally distin 

guishable, P is a 'hidden variable'. Whenever we postulate hidden variables as the causes 

of differences in observable behavior, we assume that there exists a Curie-cause for some 

family of alternative events and derive the characteristic asymmetries of the postulated 
cause from those of the effect. It is generally accepted that postulated hidden parameters 

must be measurable, i.e. must have observable effects beyond the effect it is introduced to 

explain (e.g., on a measuring apparatus). Without such a constraint, the distinction between 

deterministic and indeterministically evolving systems becomes empirically empty, for we 

can postulate hidden differences wherever we observe hidden behavior. 

All of this suggests that the specifically theoretical aspect of scientific theorizing (inso 
far as it consists in choosing between models which embed the same empirical substructures 

but differ in their higher level theoretical structure) is just an application of Curie's Principle 
on a cosmic scale, for it is entirely a matter of deriving intrinsic asymmetries in a postulated 

Curie-cause (the underlying physical structure of the world) from asymmetries in its effect 

(the appearances), on the assumption that the former determines the latter. 
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